Dr. Qingwu 'William' Meng

Dr. Meng is currently an Assistant Professor in Plant and Soil Sciences at the University of Delaware. He worked as a plant scientist for a private company in Grow Research and Development. Dr. Meng's research expertise is in LED light control in controlled environment systems. Following are some of his recent papers.

Education

Ph.D.	Horticulture, Michigan State University Dissertation: Spectral manipulation improves growth and quality attributes of leafy greens grown indoors	2018
Ph.D.	Multidisciplinary Science, Rensselaer Polytechnic Institute (transferred)	2015
M.S.	Horticulture, Michigan State University Thesis: Investigating use of blue, red, and far-red light from light-emitting diodes to regulate flowering of photoperiodic ornamental crops	2014
B.E.	Agricultural Engineering • B.A., English, China Agricultural University Thesis: Light quality affects growth and development of cucumber seedlings in an enclosed transplant factory	2012

- Meng, Q.* and E.S. Runkle*. 2023. Blue photons from broad-spectrum LEDs control growth, morphology, and coloration of indoor hydroponic red-leaf lettuce. Plants (minor revisions submitted, pending acceptance).
- Kohler, A.E., E.M. Birtell, E.S. Runkle, and Q. Meng*. 2023. Day-extension blue light inhibits flowering of chrysanthemum when the short main photoperiod includes far-red light. J. Amer. Soc. Hort. Sci. (accepted).
- Runkle, E.S.*, Y. Park, and Q. Meng. 2022. High photosynthetic photon flux density can attenuate effects of light quality. Acta Hort. 1337:333–340. [CrossRef]
- Meng, Q. and E.S. Runkle*. 2020. Growth responses of red-leaf lettuce to temporal spectral changes. Front. Plant Sci. 11:571788. [CrossRef]
- Kelly, N., D. Choe, Q. Meng, and E.S. Runkle*. 2020. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hort. 272:109565. [CrossRef]
- Lopez, R.G.*, Q. Meng, and E.S. Runkle. 2020. Blue radiation signals and saturates photoperiodic flowering of several long-day plants at crop-specific photon flux densities. Sci. Hort. 271:109470. [CrossRef]
- Meng, Q., J. Boldt, and E.S. Runkle*. 2020. Blue radiation interacts with green radiation to influence growth and predominantly controls quality attributes of lettuce. J. Amer. Soc. Hort. Sci. 145:75–87. [CrossRef]
- Runkle, E.S.*, Q. Meng, and Y. Park. 2019. LED applications in greenhouse and indoor production of horticultural crops. Acta. Hort. 1263:17–30. [CrossRef]
- Meng, Q. and E.S. Runkle*. 2019. Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Sci. Hort. 255:269–280. [CrossRef]
- Meng, Q., N. Kelly, and E.S. Runkle*. 2019. Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environ. Exp. Bot. 162:383–391. [CrossRef]