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Long-standing questions in marine viral ecology are centered on
understanding how viral assemblages change along gradients in
space and time. However, investigating these fundamental eco-
logical questions has been challenging due to incomplete repre-
sentation of naturally occurring viral diversity in single gene- or
morphology-based studies and an inability to identify up to 90%
of reads in viral metagenomes (viromes). Although protein cluster-
ing techniques provide a significant advance by helping organize
this unknownmetagenomic sequence space, they typically use only
∼75% of the data and rely on assembly methods not yet tuned for
naturally occurring sequence variation. Here, we introduce an anno-
tation- and assembly-free strategy for comparative metagenomics
that combines shared k-mer and social network analyses (regres-
sion modeling). This robust statistical framework enables visualiza-
tion of complex sample networks and determination of ecological
factors driving community structure. Application to 32 viromes
from the Pacific Ocean Virome dataset identified clusters of sam-
ples broadly delineated by photic zone and revealed that geo-
graphic region, depth, and proximity to shore were significant pre-
dictors of community structure. Within subsets of this dataset, depth,
season, and oxygen concentration were significant drivers of viral
community structure at a single open ocean station, whereas variabil-
ity along onshore–offshore transects was driven by oxygen concen-
tration in an area with an oxygen minimum zone and not depth or
proximity to shore, as might be expected. Together these results
demonstrate that this highly scalable approach using complete
metagenomic network-based comparisons can both test and gen-
erate hypotheses for ecological investigation of viral and microbial
communities in nature.

virus | microbial ecology | Bayesian network

Microorganisms drive global biogeochemical cycles (1), with
abundances and taxonomic composition tuned to spatio-

temporally varying environmental conditions (2–5). Viruses then
modulate these biogeochemical processes through mortality, hori-
zontal gene transfer, and metabolic reprogramming (6). However,
our understanding of how viral communities change in response to
biological, physical, and chemical factors and host availability has
been limited by technical challenges.
Most viruses in the ocean lack both cultivated representatives

[85% of 1,100 sequenced phage genomes derive from only 3 of
45 bacterial phyla (7)] and a universally conserved marker gene
(8); thus, metagenomics is commonly applied to characterize the
ecology and evolution of viral assemblages. Problematically,
however, our ability to investigate these assemblages via meta-
genomics remains limited by the lack of known viruses and viral
proteins in biological sequence databases. The first viral meta-
genome (virome) used thousands of Sanger reads and found that
65% of sequences were unknown [i.e., no database match for
reads >600 bp (9)]. Adoption of next-generation sequencing
(NGS) technologies then generated hundreds of thousands of
reads (averaging 102 bp in length) per virome and returned
∼90% sequence novelty (10). This unknown problem has not

been significantly improved on in subsequent oceanic virome
studies regardless of sequencing platform (11). This novelty limits
taxonomic and functional inferences about viral assemblages
and makes comparative analyses that only use the known por-
tion of these datasets minimally informative at best and completely
misleading at worst. Additionally, the standard practice of com-
paring new datasets against large genomic databases is compute
intensive and increasingly unfeasible given escalating scales in
datasets and databases.
To circumvent similar issues, Yooseph et al. (12) clustered

environmental reads with known proteins from available data-
bases to define sequence similarity-based protein clusters (PCs)
to analyze the first global ocean microbial metagenomic datasets.
This PC approach helps to both organize the vastly unknown
sequence space in metagenomes and identify abundant proteins
in environmental datasets even where taxonomy and function are
unknown. Application of this approach to viromes has also been
fruitful and has led to (i) a dataset of 456K protein clusters (11),
(ii) comparative estimates of viral community diversity across
sites (11, 13), and (iii) an estimate that the global virome is three
orders of magnitude less diverse than previously thought (14).
Although a valuable approach for metagenomic data, particu-
larly for viromes where functional and taxonomic information is
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especially limiting, there are drawbacks to the PC approach in-
cluding (i) only mapping ∼75% of the data (11) and (ii) a re-
liance on metagenomic assembly algorithms not yet optimized
for handling sequence variation derived from sequencing artifact
and real population heterogeneity (15).
Recently, k-mer–based approaches were introduced to facili-

tate genome annotation (16) and for whole genome comparison
to identify relationships among organisms without assembly and
synteny analysis (17). For larger-scale metagenomic datasets, this
approach offers a computationally scalable option for direct
comparisons. Specifically, this shared k-mer strategy enables a
similarity metric and the ability to identify clusters of metagenomes
to infer how microbial communities are affected by environmental
factors (18). These are significant advances, but they suffer from the
lack of a unified statistical framework for evaluating genetic pre-
dictors of community structure based on multiple ecological varia-
bles that can be dependent on one another.
Here, we introduce a strategy to comparatively evaluate complete

metagenomes by combining a shared k-mer approach with social
network analysis to place all data into a unified context. Expanding
on prior k-mer-based metagenomic methods (17, 18), a model was
used to determine the statistical significance of ecological variables
in forming the network while also accounting for dependency
among these variables. The resulting network allows for data-
driven hypothesis testing and generation through the evaluation of
k-mer–based virome proximity in network space and statistical
evaluation of ecological variables that drive these relationships.
Application of this approach to 32 Pacific Ocean viromes (POVs)
reveals a high-level overview of shared sequence space between
these viromes, investigates the environmental characteristics that
drive variability in viral community structure, and identifies test-
able hypotheses regarding viral community dynamics. Finally, al-
though demonstrated on viromes, this strategy can be efficiently
implemented on many large-scale sequence datasets with broad
uses from environmental to clinical applications.

Results
Similar to previous metagenomic studies of ocean viruses (9, 10,
19–21), the 6,000,000 read POV dataset was dominated by the
unknown (<6% of reads matched known viruses) (22). To more
holistically compare viral metagenomes in a computationally
scalable way (57× faster than BLAST and comparable to heu-
ristic clustering algorithms; Tables S1 and S2), a strategy was
employed using read-level k-mer similarity analyses between
viromes as input to a social network analysis (SNA) to model
relationships between viromes and metadata using statistical
regression methodologies (23–25) (for details, see SI Methods).
These analyses resulted in (i) a unified comparative network of
viromes based on sequence composition (Fig. 1) and (ii) a statistical
measure of the effect of covariates (i.e., season, proximity to shore,
and depth) on the network structure using Eq. 1 (Table 1). This
technique was applied to the complete dataset and two subsampled
datasets to examine broad-scale, temporal, and spatial patterns as
follows: (i) all 32 Pacific Ocean samples (Fig. 1 A and B), (ii) open
ocean, station P26 LineP samples that vary by season and depth
(Fig. 1C), and (iii) spring LineP transect samples that vary by
proximity to shore and depth (Fig. 1D).

Broad-Scale Patterns Across 32 Pacific Ocean Viral Communities. Vi-
sually, eight regions emerged from the full 32 POV network that
broadly differed by photic zone (three photic vs. five aphotic; Fig.
1A). In the aphotic portion of the network, the first region con-
tained three viromes from summer at LineP open ocean station P26
and the second region contained three spring LineP samples from
deep samples of the transect. The third region in the aphotic region
of the network contained viromes from all three biomes with deep
samples and across seasons, whereas the fourth and fifth regions
contained outlier LineP spring viromes sampled from the base of
the oxygen minimum zone.
A sixth region, in the photic portion of the network, con-

tained all four of the spring/summer surface ocean LineP samples

regardless of whether they were coastal, intermediate, or open
ocean stations, as well as one Monterey Bay (MBARI) virome
sampled in fall from the deep chlorophyll maximum (DCM; 42
m) at an intermediate ocean transect site. The seventh region
contained surface water viromes including four near-replicate
viromes [a single viral-concentrate that was differentially con-
centrated or purified (13)], sampled in the spring from Scripps Pier,
one MBARI fall coastal virome, and one LineP winter open ocean
virome. Finally, an eighth region contained five viromes including
three from theMBARI photic zone at intermediate and open ocean
stations and two shallow samples from the Great Barrier Reef.
To complement these overall qualitative patterns (based on

quantitative underpinnings), our unified network regression model
was also used to evaluate ecological drivers of the observed network
structure. Here, biogeographic region, depth, and proximity to
shore were significant predictors of the overall POV network,
but season was not (Table 1). Overall, only 3% of reads (n =
196,924) were universal to all samples within the POV net-
work, whereas 23% and 10% of reads were exclusive to photic
or aphotic parts of the network, respectively (Fig. 1B). The
four near-replicate viromes from Scripps Pier contained the
most activity (shared reads) in the network, whereas the
shallow Great Barrier Reef viromes and one MBARI virome
had the least (Fig. S1).

Finer-Scale Patterns Across Subnetworks. Given the complexity of
the overall POV network, smaller refined subnetworks were ex-
amined to differentiate spatiotemporal features. First, analyses
were focused on the most temporally well-resolved subsets of
samples that included 11 viromes from the LineP open ocean

Fig. 1. Visualizing relationships between marine viral communities. (A) Social
network of all POV samples with clusters circled in red. (B) Euler diagram (stress =
0.1027) depicting the portion of sequences shared by the eight clusters circled in
A and the percent of sequences unique to the photic or aphotic zone. (C) Social
network of all samples from LineP open ocean station P26. (D) Social network of
all samples from the spring LineP transect. Dots in the social network graphs
represent statistical samples taken from the marginal posterior distributions.
Labels are placed at the posterior mean for each virome.
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P26 station. Visually, again upper ocean, photic zone viromes
were clearly separated from deep water, aphotic zone viromes,
with seasonality leading to structure within these zones (Fig. 1C).
Statistical regressions suggested that ecological drivers included
depth, season, and oxygen concentration (Table 1).
A second subset of the data from LineP allowed focus on

spatial variability from the coastal to open ocean samples col-
lected on a springtime research cruise (Fig. 1D). Visually, again
the photic and aphotic zone viromes were separated in shared
k-mer space, but this time no strong patterns were observed with
depth within these larger zones or with proximity to shore. Sta-
tistical analyses supported these qualitative observations, as only
oxygen represented a structuring factor (Table 1).

LineP: A Case Study in Niche Specialization by Season. The power of
the above analyses is the ability to visually represent viromes and
define significant metadata factors to drive further investigation
into underlying patterns. Given that reads have associated abun-
dances (via the k-mer mode; SI Methods and Figs. S2 and S3), reads
that are exclusive to specific viromes or parts of the network can be
mined out of the underlying data. We demonstrate this by exam-
ining reads that are distinct by season (summer vs. winter) and
photic zone (photic vs. aphotic) at open ocean station P26 at
LineP in the Pacific Ocean based on Fig. 1C and Table 1. The
exclusive read data demonstrate metabolic differences in parts of
the network that likely derive from viral-encoded auxiliary meta-
bolic genes as follows (Fig. 2), given the purity of these viromes
(11, 13, 26).
The largest proportion of exclusive reads in all viromes, irre-

spective of photic zone or season, encodes genes related to nucle-
otide metabolism (Fig. 2). Given that viruses require nucleotides for
replication, this result is not unexpected. When broadly comparing
the photic zone and aphotic zone, aphotic viromes contain more
overall metabolic functional capacity. In particular, genes related to
the tricarboxylic acid (TCA) cycle, mannose and fructose metabo-
lism, and electron transport chain (ETC) are more highly repre-
sented in aphotic viromes and are likely involved in energy pro-
duction (26). These genes may be less represented in photic
samples, given the capacity for viruses to encode and express pho-
tosynthetic genes (6) that allow them to derive energy for phage
replication. Fatty acid metabolism may also be a source of energy
production in phage in all seasons and photic zones, but most highly
represented in summer aphotic viromes perhaps due to increased

phage production in the summer and less energy derived from other
sources. Interestingly, aphotic viromes and winter photic viromes
contain genes related to cysteine and methionine metabolism,
whose role is currently unknown but may be related to scavenging
iron from Fe-S clusters in iron limited regions given that cysteine is
important for Fe-S cluster biogenesis and degradation (27).
Last, pyrimidine, purine, and glutathione metabolism may be
important in winter aphotic viromes. Given that glutathione
improves cold resistance in bacteria (28), viruses may help to
provide protection to their infected hosts in the winter. These
data suggest that viruses coevolve with their hosts and bolster
host metabolism to improve host vitality for phage production
given environmental selective pressures on the host.

Table 1. Bayesian inference numerical summaries for social networks with selected covariates

Network dataset/Covariate Parameter Posterior median
Lower limit credible

interval (2.5%)
Upper limit credible
interval (97.5%)

Full dataset [32 samples (nodes)]
logðni,jÞ γ 0.63 0.42 0.88
Geographic region β1 0.14 0.06 0.21
Depth β2 0.12 0.06 0.19
Season β3 0.03 −0.02 0.08
Proximity to shore β4 0.12 0.08 0.16
Oxygen β5 −0.00 −0.21 0.08

LineP open ocean [11 samples (nodes)]
logðni,jÞ γ 0.828 0.206 1.298
Depth β1 0.224 0.11 0.343
Season β2 0.124 0.032 0.257
Oxygen β3 −0.336 -0.589 -0.084

LineP spring transect [11 samples (nodes)]
logðni,jÞ γ 6.737 5.555 7.874
Depth β1 0.117 −0.053 0.287
Proximity to shore β2 0.047 −0.063 0.147
Oxygen β3 0.867 0.253 1.205

Statistically significant covariates for each network are shown in bold. Covariates are considered significant if the upper and lower
credible intervals (Baysian confidence intervals) do not overlap with zero. The covariate logðni,jÞ is an offset (although we do not restrict
the coefficient to be equal to 1), which accounts for the fact that more shared read space may occur between two viromes if the either
of the viromes is larger.
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Fig. 2. Map of viral-encoded metabolic host genes from summer/winter
and photic/aphotic at open ocean station P26 at LineP in the Pacific Ocean.
The width of the lines corresponds to the normalized read abundance for
viral encoded host genes in metabolic pathways from (A) summer photic (10
m) virome at LineP P26, (B) winter photic (10 m) virome at LineP P26, (C)
summer aphotic (500, 1,000, and 2,000 m) viromes at LineP P26, and (D)
winter aphotic (500, 1,000, and 2,000 m) viromes at LineP P26. ETC, electron
transport chain. For map generation, see ref. 59.
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Discussion
Microbes are now well recognized as critical players in ecosys-
tems ranging from oceans and soils to humans and bioreactors.
Their viruses are often as important, but methodological chal-
lenges have made it difficult to investigate even relatively fun-
damental questions such as how viral communities change over
space and time. All currently used methods (e.g., morphology,
viral genome fingerprinting, single-gene analyses, database-de-
pendent annotation, and PC-based metagenomics) have issues
that prevent extrapolating inferences to whole viral communi-
ties. The approach presented here that combines shared k-
mer and social network analysis uses all of the reads, does not
require assembly or database-dependent annotation, and includes
a statistical framework (i.e., regression modeling) to evaluate eco-
logical drivers of the resulting network structure. Application to
32 Pacific Ocean viromes allowed us to test hypotheses about how
viral communities change over space and time, as well as generate
new hypotheses where expectations were not met.

Broad-Scale Inferences About Pacific Ocean Viral Communities.
Comparisons made across the entire POV dataset revealed that
seasonality and oxygen were relatively unimportant in structuring
viral communities, whereas geography, depth, and proximity to
shore were significant. These first findings, that seasonality and
oxygen do not structure POV communities, are likely a result of
the overall dataset containing samples with many differing eco-
logical features: e.g., half the dataset is associated with an oxygen
minimum zone (LineP) and the rest have relatively invariant
oxygen conditions. Thus, other features that strongly vary within
the dataset overwhelm the more specific effects of season and
oxygen (but see discussion of subnetworks below).
That geography is a strong driver of viral community structure

is striking as ocean viruses have been posited to have extensive
dispersion capability [inferred from global distribution of iden-
tical genetic marker sequences (29)] and a recent morphological
survey of ocean viral communities found that geographic dis-
tance was not significant in explaining their variability across six
oceans and seas (30). However, genome-wide variation likely far
exceeds that of highly conserved marker genes and morphology-
based metrics. A previous metagenomic study also suggested that
four spatially diverse ocean viral communities were quite dif-
ferent (10), but the viromes were prepared in a nonquantitative
manner (31), and only the known portion of these viromes (∼2%
of the total reads with annotation to known phage) were ana-
lyzed to make this inference. Our observation of geographic
variability in total viral metagenomes is consistent with variability
of their dominant hosts, bacteria, which have geographic vari-
ability at the community level (18, 32), as well as within abundant
phyla, including either large-scale genomic changes (e.g., in Pelagi-
bacter) (33) or small-scale genomic changes more strongly localized
to genomic islands (e.g., in cyanobacteria) (34).
Beyond geography, both depth and proximity to shore repre-

sent some of the strongest gradients available in the oceans, so it
is not surprising they might also structure viral community com-
position across this larger sample set. Total viral particle counts
broadly mirror those of prokaryotes across depth profiles in the
oceans (35), which suggests that as microbial population abundan-
ces and structure change with depth, so too would their viruses. For
example, microbial metagenomes from an open ocean depth profile
show cyanophage abundance broadly mirrors that of their hosts
(36). As well, depth-related variability in extracellular marine viral
communities has been documented using viral genome finger-
printing (37, 38), and our findings support this, showing that depth
is a clear driver of viral community structure. The latter driving factor,
proximity to shore, is discussed with the subnetwork findings below.

Finer-Scale Evaluation of Ecological Factors That Structure Viral
Communities. The decades of study along the LineP oceanographic
transect (39) present an ideal backdrop for investigating temporal
and spatial variability in viral communities. To focus on temporal
variability, we examined a subnetwork of 11 viromes from February

(winter), June (spring), and August (summer) at a single LineP
station (open ocean station P26). This analysis revealed that depth,
season, and oxygen were significant drivers of viral community
structure in this subset of the data. In addition to the discussion of
depth above, it is noteworthy that the LineP transect region is
strongly stratified to the point of establishing one of the largest
ocean interior oxygen minimum zones (40), so it is not surprising
that viral community structure would significantly vary with depth
and oxygen. That seasonality was also a driver is consistent with
studies demonstrating annual cyclical changes in marine bacterial
community structure (3, 41, 42). Although our single-year virome
dataset does not permit inferences about year-to-year variation,
similar annual repeatability has been observed in total viral abun-
dance at the Bermuda Atlantic Time Series station (41), suggesting
that annual repeatability of microbial hosts may lead to the same
for their viral predators.
Additionally, the LineP transect is ideal for evaluating spatial

changes in viral community structure along coastal to open ocean
gradients. The strong vertical oxygen gradients along this transect
(43) structured the viral community in the temporally focused
subnetwork analysis above and also do so here in the spatial sub-
network analysis for a single season. Mechanistically, these strong
gradients in oxygen are likely structuring LineP microbial pop-
ulations as observed for total bacterial community composition (43)
and dominant bacterial phyla [e.g., SUP05 and Marine Group A
(MGA) (43)], which in turn structure their viral communities. These
results are supported by studies of viral communities along strong
oxygen gradients in stratified lakes using morphology or viral ge-
nome fingerprinting (37, 44), as well as a metagenomic investigation
of viruses in a marine oxygen minimum zone off of Chile (45).
Notable outliers in our dataset include viromes from the base

of the deep ocean oxycline (LineP spring 2,000-m viromes from
the intermediate and open ocean). Distinct viral communities
have been observed within oxyclines of marine and saline lake
environments (44, 45), and thus these samples may represent
viruses infecting bacteria adapted to dysoxic conditions (43).
Alternatively, these deep oxycline viral communities could in-
clude surface water viruses that were entrapped on sinking par-
ticles and released at depth as a result of degradation, explaining
their greater similarity to photic zone samples.
Additionally, although proximity to shore was a significant driver

of viral community variability in the network with all samples, it was
not significant when focusing solely on the LineP transect despite
gradients in nutrients and productivity that occur along this transect
(46). A lack of spatial variability in abundance of a specific bacterial
phyla (MGA) along this transect has been observed (47), supporting
our findings. Thus, the change in significance of proximity to shore
as a structuring variable may be explained in the same fashion as for
oxygen concentration. Specifically, the inclusion of coastal samples
from MBARI, Scripps Pier, and the Great Barrier Reef may have
been the primary drivers of this relationship in the full sample
network, and their exclusion in the LineP transect network resulted
in oxygen being the overwhelmingly dominant structuring variable,
as was also noted for MGA distribution along this transect (47).
Last, we note that activity between viromes (shared reads) varies

with sequencing effort. Four deeply sequenced near-replicate
viromes from Scripps Pier showed the highest activity with other
viromes (Fig. S1) likely due to greater representation of reads de-
rived from the rare virosphere. Because the network is normalized
for sequencing effort, this does not affect network structure, but is
important when considering activity between viromes.

Analytical Advances. The approach outlined here provides a signifi-
cant advance over alternative ecological methods for dimensionality
reduction such as principle components analysis (PCoA) and non-
metric multidimensional scaling (nMDS; for details, see SI Meth-
ods). Broadly, the contrast lies in the fact that PCoA and nMDS
are generally descriptive approaches (48), whereas the network
approach outlined here provides a full inferential framework.
Specifically, relational data methods are used to create a de-
pendence structure in ordination space that includes random
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effects and as a result allows for the proper inference for re-
gression coefficients (i.e., metadata). Or, in simple terms, the dis-
tances between viromes based on shared reads can be visually
represented, while at the same time accounting for biological
factors in a single statistical model. The importance of single
modeling and inferential framework is highlighted in Chiu and
Westveld (25).
This approach is also inherently different from other statistical

frameworks [e.g., MaAsLin (49)] that identify associations be-
tween metadata and the abundance of operational taxonomic
units (OTUs) or functions in metagenomic samples. Specifically,
MaAsLin outputs a list of OTUs or functions that are significant
given a metadata type. Given that the results are granular (by
OTU or function) and only account for only one metadata type
at a time, they cannot be combined. In contrast, our analytical
framework (i) uses a model that enables simultaneous exami-
nation of shared sequence space between viromes in conjunction
with multiple metadata types and (ii) requires no prior organi-
zational bins (e.g., OTUs for MaAsLin), which is critical for
viruses that lack a universal barcode gene for such taxonomic
assignations. Both advances are fundamental for surveying complex
viral communities to look for ecological drivers of community
structure but also help broaden the toolkit available for other
comparative metagenomic datasets (e.g., bacterial).
This approach may also prove to be important in other microbial

analyses wherein taxonomic identification is less of a concern given
rRNA sequence datasets. Specifically, we use entire metagenomes
rather than a single gene (like 16S in bacteria) to assess the com-
position of microbial communities. The use of complete meta-
genomes is particularly important in cases where metagenomes
may contain closely related species, indistinguishable on the level
of the 16S gene alone, that have functional differences that
make them distinct.
Further, because reads that represent significant patterns in

the network can be mined out (see results LineP seasonal niche
differentiation), this approach drives functional comparative
metagenomic analyses. This approach is also important prag-
matically in terms of runtime because fewer reads require ex-
tensive functional annotation. Moreover, the remaining unknown
fraction of reads exclusive to a certain part of the network pro-
vides a starting point for future empirical analyses to understand
the function of novel viral species. This approach is broadly
applicable to metagenomes comprised of any microbe from
viruses, to bacteria or fungi, and extends current approaches
through the use of whole metagenomes and a comprehensive
statistical framework.

Conclusions. Although marine microbes and their viruses are
fundamental to Earth system function, the culture-independent
metagenomic techniques used to study them present “big data”
analytical challenges. The combination of shared k-mer and
social network analysis presented here provides a powerful
way to visualize and explore relationships between metagenomic
samples and populations and statically evaluate the underlying
factors that drive this variability. These methods are compu-
tationally tractable and widely applicable across sequence data-
sets and have the capacity to affect how data are stored, visualized,
and analyzed, making use of big data analytics and the large-scale
context that is now becoming available in metagenomic data
repositories. These types of analyses and scales of data are
needed to predictively model Earth’s most abundant biological
entities, viruses, and their predominant hosts, microorganisms.

Methods
Methods detailed below are further documented in SI Methods, Figs. S2 and
S3, and Tables S1–S4. All source code is freely available at ref. 50.

Dataset. The 32-virome POV dataset (Table S3) (11) was examined to identify
patterns of sequence similarity in viromes and determine the relationship
between these patterns and depth, season, proximity to shore, geographic
distance, and oxygen concentration. This dataset is a recently available

public resource that leverages well-characterized sample-to-sequence prep-
aration methods to generate quantitative viromes (13, 31). A full description
of metadata associated with each virome and methods used to prepare the
viromes and perform read quality control is included in SI Methods and
Table S3. One additional filtering step was applied beyond the quality
control steps for the POV dataset (11) that entailed removing reads with low
abundance k-mers (k-mer = 1) in their own virome that were suspected of
being contaminants (13) and reads with high-abundance k-mers (>1,000)
that are likely to be either sequencing artifacts or highly conserved protein
domains that may distort the overall abundance of that read.

k-mer Analyses. In the k-mer analysis below, suffix arrays were created using
mkvtree from the vmatch package version 2.1.5 (51) usingparameters (-pl -allout -v).
Reads were compared with suffix arrays using vmatch’s vmerstat (-minocc 1
-counts) to search for the frequency of 20-bp k-mers across the read. The k-mer
size was set by examining the uniqueness ratio in the dataset (52). The k-mer
value of 20 was chosen given that it represented an inflection point where
k-mer hits moved from random to representative of the sequence content.

Pairwise All-vs.-All Analysis of Viromes. High-quality reads for each virome
were compared with suffix arrays from all other viromes in a pairwise fashion
(compute pipeline kmercompare.tar) to achieve an all-vs.-all analysis of the
viromes [virome i vs. virome j, (for i = 1,. . .,32) and (for j = 1,. . .,32)]. The
abundance for each read (in virome i) was calculated by finding the mode
k-mer value for all k-mers in that read compared with the virome j suffix
array (SI Methods and Figs. S2 and S3). This analysis resulted in a single
abundance value (k-mer mode) for each read in virome i compared with
virome j. The data were then normalized by averaging ðyi,jÞ (shared read
count) and ðni,jÞ (total read count) between virome i and virome j. Nor-
malized shared read counts were used to construct a 32 × 32 matrix
of viromes.

Network Analysis. To model the valued (nonbinary) nondirected data above,
we consider the latent space approach outlined in Eq. 1 (23–25, 53). Our
network modeling framework, via random effects, decomposes the statis-
tical variation in the data to account for (i) the activity level ðaiÞ of each
virome i (average amount of sequence space shared across the network for
each virome i) and (ii) similarity (clustering) of shared sequence amount
among viromes. For i ), z′i zj is measure of distance and similarity between
viromes i and j. Each virome’s position ðziÞ may be visualized in a
k-dimensional latent space Z (after a Procrustes’ transformation to convert
into a similar grid to compare) where virome i and virome j are considered
similar if they are close in that space. For ease of visualization, we consider
the case where k= 2 (ref. 53 considered a 1D space).

Finally, we account for a set of relational covariates (xij = 1 if similar, 0 if
not) based on geographic region, season, proximity to shore, depth, and
oxygen concentration using values in Table S3. In the case of oxygen con-
centration, which is a continuous value, high and low oxygen values were
determined based on a cutoff of 0.06 mL/L.

log
�
yi,j

�
= α+ γ log

�
ni,j

�
+ β′xij + ai + aj + z′i zj + «ij

i< j,
ai ∼ identically  distributed  normal

�
0,σ2a

�
,

zi,1∼ identically  distributed  normal
�
0,σ2z1

�
,

zi,2 ∼ identically  distributed  normal
�
0,σ2z2

�
,

«ij ∼ identically  distributed  normal
�
0,σ2«

�
:

[1]

To estimate the parameters in the model, a Bayesian inferential approach was
considered using the R statistical software (54) and gbme.R obtained from
refs. 24 and 55. For our analyses, empirical Bayes priors were considered (the
default for the gbme.R). To examine the joint posterior distribution of the
parameters, a Markov chain of 1,000,000 scans was constructed. The first
500,000 scans were removed for burn-in, and the chain was thinned by every
100th scan, leaving 5,000 samples.

Construction of Euler Diagrams Depicting Shared Read Content in Networks.
Using data from the pairwise k-mer analysis described above, reads were
detected that were unique or shared between subsets of viromes that visually
clustered in the networks using a PERL script (get_section.pl). Reads were
considered exclusive if they were present (mode k-mer ≥ 2) in two or more
viromes in a cluster and absent (mode k-mer < 2) from viromes outside that
cluster. For single virome clusters, all reads that were not shared with other
viromes and present within that single virome at a k-mer abundance > 2
were considered exclusive. Reads that were present in a virome just once
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(k-mer = 1) were removed from the analysis given a higher probability of
contamination (13) per the discussion above. The results were then used to
compute an Euler diagram using the venneuler function (56) in the R statistical
software (54).

Annotating Exclusive Reads. Exclusive reads per the method above for LineP
summer photic viromes, summer aphotic viromes, winter photic viromes, and
winter aphotic viromes were compared against the similarity matrix of
proteins (SIMAP) released on August 20, 2013 (57) using BLASTX (58) to assign
function as previously described (22). Briefly, these analyses were imple-
mented using a custom data analysis pipeline written in Perl and bash shell
and executed on a high-performance computer using PBSPro (blastpipeline_
simap.tar). Hits were considered significant if they had an E value < 0.001,
and only top hits were retained. Interpro ids in the SIMAP functional anno-
tation were mapped to EC numbers using the swissprot_kegg_proteins_ec.csv
as a mapping (59) (ipr_to_ec.pl). Read hit counts were normalized based on

sequencing effort in the included viromes and converted into ipath2 format
(create_ipath.pl) for visual representation in the ipath2 viewer (58).
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