
  INTRODUCTION 
  The advent of “omics” technologies enabled research-

ers to undertake genome-wide surveys of gene expres-
sion (e.g., using microarrays, proteomics, or Serial Anal-
ysis of Gene Expression). However, these approaches 
also result in long lists of differentially expressed genes 
that do not per se provide useful information about 
the biological system being studied. Instead, research-
ers must rely on biological modeling to understand how 
these gene expression lists provide insights into their 
biological systems (Cordero et al., 2007; McCarthy et 

al., 2007a). Because biological modeling relies on an-
notation and analysis tools, many model organisms 
developed Model Organism Databases that provide 
centralized reference gene sets with standardized gene 
nomenclature and functional annotation to support 
comparative and functional modeling on a genome-
wide scale (Baxevanis, 2011). This in turn provides the 
core data used by bioinformatics tool developers who 
develop tools for functional modeling of gene expression 
data sets. 

  The development of next generation sequencing tech-
niques for transcription profiling democratized func-
tional genomics studies by enabling researchers to study 
an even broader range of species instead of focusing 
on species that have well-defined microarray platforms 
available. However, this same technique puts further 
pressure on the development of annotations and func-
tional modeling tools that can support a much larger 
range of species and predict functions for novel genes 
identified by this same technique. As a result, while the 
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  ABSTRACT   One of the challenges of functional genom-
ics is to create a better understanding of the biological 
system being studied so that the data produced are lev-
eraged to provide gains for agriculture, human health, 
and the environment. Functional modeling enables re-
searchers to make sense of these data as it reframes a 
long list of genes or gene products (mRNA, ncRNA, 
and proteins) by grouping based upon function, be it 
individual molecular functions or interactions between 
these molecules or broader biological processes, includ-
ing metabolic and signaling pathways. However, poul-
try researchers have been hampered by a lack of func-
tional annotation data, tools, and training to use these 
data and tools. Moreover, this lack is becoming more 
critical as new sequencing technologies enable us to 
generate data not only for an increasingly diverse range 
of species but also individual genomes and populations 
of individuals. We discuss the impact of these new se-
quencing technologies on poultry research, with a spe-
cific focus on what functional modeling resources are 
available for poultry researchers. We also describe key 

strategies for researchers who wish to functionally mod-
el their own data, providing background information 
about functional modeling approaches, the data and 
tools to support these approaches, and the strengths 
and limitations of each. Specifically, we describe meth-
ods for functional analysis using Gene Ontology (GO) 
functional summaries, functional enrichment analysis, 
and pathways and network modeling. As annotation 
efforts begin to provide the fundamental data that un-
derpin poultry functional modeling (such as improved 
gene identification, standardized gene nomenclature, 
temporal and spatial expression data and gene product 
function), tool developers are incorporating these data 
into new and existing tools that are used for functional 
modeling, and cyberinfrastructure is being developed 
to provide the necessary extendibility and scalability 
for storing and analyzing these data. This process will 
support the efforts of poultry researchers to make sense 
of their functional genomics data sets, and we provide 
here a starting point for researchers who wish to take 
advantage of these tools. 
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gap between data and knowledge is closing in several 
well-studied species, the need for fundamental annota-
tion to support functional modeling in a broad range of 
species is critical.

This change in the way gene expression studies are 
done is borne out by a cursory examination of the type 
of gene expression data submitted to gene expression 
repositories. Currently (August, 2012) the National 
Center for Biotechnology Information Gene Expression 
Omnibus Database (Barrett and Edgar, 2006) and its 
European partner the ArrayExpress Archive (Brazma 
et al., 2006) together contain 5,427 avian gene ex-
pression data sets. These data sets are predominantly 
based upon microarray platforms, mostly from chicken 
but also from turkey and zebra finch. However, an in-
spection of these records reveals that next generation 
sequencing data sets are available for avian species 
such as Northern bobwhite quail, house finch, duck, 
and rock doves. Moreover, the Genome 10K Project is 
already sequencing more than 50 additional bird ge-
nomes (Genome 10K Community of Scientists, 2009), 
an effort that will provide reference genomes for fu-
ture bird gene expression studies. The recent announce-
ment that this initiative completed sequencing of the 
white goose genome (http://www.genomics.cn/en/
news/show_news?nid=98853) means that there is a 
representative genome available for most major poul-
try genomes: chicken, quail, turkey, duck, and goose. 
Although the chicken genome remains the best studied 
and annotated bird genome, information from each bird 
genome has the power to inform each of the other ge-
nomes through comparative genomic analyses (Dalloul 
et al., 2010; Warren et al., 2010). If researchers are to 
leverage these sequence data into information concern-
ing key production traits for poultry, it is necessary 
that they are able to translate their functional genomic 
data sets into information about function so that they 
can produce gains for agriculture and human nutrition.

The following sections describe key aspects of an-
notation and functional modeling with a particular fo-
cus on resources that support functional modeling of 
poultry data sets. Each section will provide background 
information about the type of data and tools as well as 
strategies for incorporating these data into a functional 
model. However, it is important to stress that there is 
no one method for functional modeling but rather this 
must be informed by the biological system itself and 
the type of biological questions that the system lends 
itself to studying. Moreover, no amount of functional 
modeling can overcome deficiencies in experimental de-
sign. Other manuscripts published as part of the 2012 
Poultry Science Association Symposium Experimental 
Design for Poultry Production and Genomics Research 
addressed aspects of experimental design and analysis 
and should also be considered, as appropriate. Instead, 
this manuscript should be viewed as a starting primer 
for modeling of functional genomics data sets, with fur-

ther iterations and insights driven by existing research 
knowledge.

Functional Modeling
The key concept underlying functional modeling is 

that biologists are better able to conceptualize and un-
derstand the dynamics of complex biological systems 
if they can move from long, differentially expressed 
gene lists to larger concepts such as biological processes 
(e.g., development) or pathways (e.g., specific meta-
bolic and signaling events). This approach enables the 
researchers to group their 3,000 differentially expressed 
transcripts from an array (or more, from RNASeq) into 
10 to 30 functional categories. Reducing the number of 
elements that are relevant to common molecular func-
tions, physiological processes, and pathways resolves 
the data into biological components that the researcher 
is familiar with and also avoids confusion caused by no-
menclature of genes and their gene products. For exam-
ple, whereas some researchers may know the key genes 
involved in specific processes, it is unlikely that they 
are familiar with several thousand gene names that are 
produced as part of a differentially expressed data set. 
Similarly, this abstraction helps navigate across differ-
ent species where gene nomenclature is not consistent. 
This problem of understanding a large number of genes 
and their gene products is further complicated in poul-
try (as it is with all agricultural species) because there 
is no standard way of naming genes or their subsequent 
gene products, and names may vary between database, 
publication, and research groups. More recently, the 
establishment of an international Chicken Gene No-
menclature Committee has begun the work of assign-
ing standardized gene nomenclature (Burt et al., 2009); 
however, this work has not yet affected legacy gene ar-
ray annotation files, nor is it extended to include other 
poultry and avian species.

If researchers are to move from molecular and “omic” 
studies to understanding the phenotypes of their sys-
tems and how they is affected by changes to the envi-
ronment, researchers must be able to readily translate 
gene sets into physiological processes. Functional mod-
eling of large data sets enables data to be restructured 
and reexamined in biological terms that make sense to 
the researcher. Functional modeling of larger, “omics” 
data sets is underpinned by fundamental annotation 
data and requires bioinformatics tools that automate 
the analysis using these data and visualize the results 
in a way that makes sense to the biologist. We stress 
that these data and tools cannot replace the biological 
knowledge of the researcher—they can only assist her 
or him to view it in a way that enables a deeper under-
standing of the system being studied. In addition, be-
fore describing these general approaches to functional 
modeling, it is first important to consider the underly-
ing data used in functional modeling and the strengths 
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and limitations for modeling poultry data sets using 
existing annotations.

Data to Support Functional Modeling
One of the current limitations facing all but a hand-

ful of model organisms is a lack of sufficient underlying 
annotation data to support functional modeling. This is 
a 2-fold problem. First, there are a large number of gene 
products (including those that are clearly identified) 
that are not well characterized, and we do not know 
anything about their function. These gene products 
also include novel (newly identified) and computation-
ally predicted genes (often lineage specific). Informa-
tion about their function requires a mixture of bioin-
formatic analysis and development of high-throughput 
functional assays are required to keep pace with the 
discovery of novel genes (Roberts, 2004). Second, there 
is a further subset of gene products where elements of 
their function have been studied, but these data are not 
readily accessible. These genes require annotation ef-
forts to extract the available information that is known 
about these genes and their gene products. In addi-
tion to these 2 limitations, we must also consider that 
advances in functional genomics technologies (such as 
the development of RNASeq expression analysis and 
increased sensitivity of proteomic detection) require 
new analysis tools and the requisite computational re-
sources and knowledge to use these tools. As a preface 
to discussing functional modeling approaches, we will 
briefly discuss the opportunities and limitations of cur-
rent efforts to provide data and resources to support 
functional modeling in poultry.

Cyberinfrastructure to Support High-Throughput 
Analysis: iAnimal. iAnimal (http://genepro.cshl.edu/
ianimal/) is a concept project based on the cyberinfra-
structure and web portal of the iPlant Collaborative. 
Briefly, the iPlant Discovery Environment (Goff et al., 
2011) is a web-based portal that enables researchers 
to manage their data, share it among collaborators, 
analyze it using different computing resources (as ap-
propriate), and integrate and share new analysis tools. 
Although most of the data management and analytical 

applications are agnostic with regard to the organis-
mal source of the data, each research community has 
specific needs. The iAnimal portal is designed to pro-
vide the animal sciences with animal-specific resources 
based on iPlant cyberinfrastructure. RNASeq analysis 
is an excellent example of why cyberinfrastructure, 
such as iAnimal, is needed by research community. A 
typical RNASeq workflow requires moving large sets of 
raw sequencing reads, cleaning them to remove poor-
quality reads, digital normalization to remove redun-
dant data, possibly converting sequence formats (e.g., 
sanger fastq encoding vs. Illumina fastq encoding), 
aligning the reads to a reference genome, viewing the 
alignments, and identifying differential expression be-
tween different experiences. Such a workflow is usu-
ally run from the command-line step by step, and may 
require substantial computing resources to process. 
Having a prebuilt workflow that is assessable from the 
web, through which it is easy to also upload data for 
processing, means that more time can be spent analyz-
ing the results and inferring biological meaning than 
trying to figure out how to properly format a command 
line argument and locating the necessary computing 
resources. National shared cyberinfrastructure means 
that computing specialists maintain both the hardware 
and software, and knowledge specialists help support 
and train the research community. In addition, such 
cyberinfrastructure may facilitate and foster collabora-
tions by providing the means for people to easily share 
data, algorithm, knowledge, expertise, and experience.

An example of how the cyberinfrastructure of iPlant/
iAnimal is fundamentally changing the scientific work-
flow is their data store. This system is based on iRODS 
software (http://www.irods.org) and creates a single 
data-storage resource accessible by any platform with 
Internet access. One of its main features from a user’s 
standpoint is high-performance parallel file transfer 
that permits reliable, resilient, and high-throughput 
transfer of very large data files. Our tests (Table 1; 
http://tinyurl.com/8u85xnb) show that moving data 
between academic institutions connected through back-
bone of Internet2 may be faster than the traditional 
method of mailing hard drives for large sets of data.

Table 1. iPlant Data Store transfer speeds between the University of California–Berkeley and Uni-
versity of Arizona (UA)1 

Source Copy method
Time to transfer  
1 G of data (s)

CD cp 320
Berkeley server scp 150
External hard drive cp 36
USB2.0 flash cp 30
iPlant Data Store (iDS) Berkeley iput to iDS/iget to UA 18
Second internal hard drive cp 15

1These tests were performed during regular academic working hours on December 8, 2011. All data were trans-
ferred to the internal hard drive (7.2 kB) of a MacPro located at the University of Arizona. Where possible, 100 
GB of data were copied between devices. The copy methods are Unix/Linux commands for “copy” (cp) and “secure 
copy” (scp).
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Currently the Discovery Environment contains the 
Ontologizer Gene Ontology (GO) term enrichment 
analysis tool (Grossmann et al., 2007), which launches 
from the Ontologizer website and allows users to add 
their own GO annotations. Other applications of the 
Discovery Environment include tools to support analy-
sis of next generation sequencing alignment and analy-
sis, phylogenetics, QTL, and genome-wide association 
studies, sequence alignments, and motif identification.

Comparative Genomics in Avians. As researchers 
move to larger and more complex data sets, it is neces-
sary that they are provided with tools to assist them 
with making sense of these data so that they are able 
to provide gains for agriculture. While next generation 
sequencing platforms are driving cyberinfrastructure 
requirements for genome assembly and gene identifi-
cation, the need for functional annotation to support 
modeling of gene expression and phenotypic data sets is 
also increasing. Not only are we now able to work on a 
much more diverse range of species (all of which require 
functional annotation), but we are also rapidly identify-
ing novel gene elements (that have no functional infor-
mation) and we are working with more complex data 
sets (e.g., integrating gene expression, metabolomics, 
SNP analysis, and phenotypic data sets).

One way to rapidly provide more functional data is 
leveraging what is already known from other organ-
isms. The key to mapping genetic information between 
genomes is identifying orthologous sets of genes. One 
platform that has tools for doing those analyses quickly 
and easily is CoGe (http://genomevolution.org). CoGe 
is a web-based platform focused on providing a rich set 
of tools for managing, analyzing, and comparing ge-
nomic data across all domains of life (Lyons and Freel-
ing, 2008). The avian genomics community and CoGe 
development group are working together to provide a 
comprehensive set of avian, reptile, and related verte-
brate genomes for use in comparative genomics. This 
includes managing multiple versions of various genomes 
including alternative assemblies and various sequence 
maskings, prebuilt data sets of orthologous genes, which 
include links for downloading sequences and analyzing 
neighboring genomic regions for conserved noncoding 
sequence and ultraconserved elements, links for rapidly 
building phylogenetic trees, and other tools for rapidly 
finding and extracting data of interest. Whereas data 
and tools are essential for the discovery process, so are 
training and collaborative tools. The avian genomics 
and CoGe groups are developing a set of tutorials fo-
cused specifically on avian comparative genomics, as 
well as leveraging iPlant’s (Goff et al., 2011) online 
community forums to create a space where avian re-
searchers can get help with their various analyses by 
posting questions that are answered by other commu-
nity members. In addition, CoGe is developing support 
for storing and visualizing expression data in a compar-
ative genomics context, and will work closely with the 
avian community members to ensure that its tools are 
compatible with and best serve their research needs.

Annotation and Bio-Ontologies. Genomic annota-
tion involves both the identification and demarcation 
of functional elements within the genome (structural 
annotation) and associating functional descriptions 
with these elements (functional annotation). The tradi-
tional paradigm for doing genomic annotation is based 
on genomic sequencing done by centralized genome 
sequencing centers that use their established genome 
annotation pipelines. Typically, structural annotation 
is done as part of the final assembly stages, whereas 
functional annotation is not always included as part 
of this same process, nor is there a single, standard 
procedure to add functional information. If, as part of 
structural annotation, genes are related to homologous 
or orthologous genes in related species, then initial gene 
nomenclature and functional annotation may also be 
assigned on this basis. Another common approach for 
assigning gene function is to analyze genes or their gene 
products for conserved functional motifs and domains, 
which also provides a good “first pass” basis for func-
tional annotation. However, this traditional model of 
genome annotation is changing as new sequencing tech-
nologies move the role of genomic annotation into the 
domain of smaller research groups, which may not have 
the capacity or expertise to provide comprehensive and 
up-to-date genomic annotation. Democratization of ge-
nome sequencing, along with reduced research funding, 
is also seeing a shift away from central databases to 
distributed systems that can continue to update and 
refine genome annotation after the initial sequencing 
effort is complete.

It was a combination of the lack of any standardized 
method for functional annotation and the subsequent 
inability to share functional information between exist-
ing model organism databases that led to the devel-
opment of the GO for functional annotation (Lewis, 
2005). Ontologies are structured, controlled vocabular-
ies that not only define the terms but also the rela-
tionships between these terms. For example, the GO 
defines gene product function in terms of Molecular 
Function (MF), Biological Process (BP), and Cellular 
Component (CC). A single term (e.g., “GO:0006917 
induction of apoptosis”) has a definition (“a process 
that directly activates any of the steps required for cell 
death by apoptosis”) but is also related to other func-
tional terms; for example, “GO:0042267 natural killer 
cell mediated cytotoxicity” is a more specific type of 
“GO:0006917 induction of apoptosis.” Ontologies are 
used in biology to ensure that annotation is done con-
sistently between different groups, thereby promoting 
data sharing. Additionally, the defined structure of the 
ontology enables rapid computational analysis of ontol-
ogy data, systematically traversing the structure using 
the relationships between terms. The ability of the GO 
to describe function in a way that is computationally 
tractable resulted in a rapid uptake of the GO by the 
bioinformatics community as they developed tools to 
do functional modeling. The development of tools that 
use the GO data and its usefulness for modeling large 
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functional genomics data sets in turn drove efforts to 
provide the underlying GO annotation data to support 
an increasing number of species. Rhee et al. (2008) pro-
vided an excellent review of the use of the GO, high-
lighting key points of which a researcher using the GO 
should be aware.

However, whereas the GO is considered the premier 
bio-ontology, it is not the only bio-ontology. The Na-
tional Center of Biomedical Bio-ontologies reports 324 
bio-ontologies in its BioPortal interface (http://biopor-
tal.bioontology.org/) and the Open Biological and Bio-
medical Ontologies (http://www.obofoundry.org/) lists 
112 ontologies. Several among these are important to 
genomic annotation and functional modeling. The Se-
quence Ontology is designed to describe functional and 
physical features of genomic sequence (e.g., genes, CpG 
islands, QTL) and to facilitate comparative analyses of 
genomes (e.g., comparing repeat elements; Mungall et 
al., 2011). Other ontologies describe specific functional 
aspects, such as the Pathway Ontology and the Molecu-
lar Interaction ontology. Because many genes can only 
be functionally characterized based on expression pat-
terns, and the number of novel genes is increasing with 
the application of next-generation sequencing technolo-
gies, ontologies that describe cell and tissue expression 
(e.g., Cell Ontology and the BRENDA Tissue Ontol-
ogy) are also increasingly useful for functional genomics 
analysis. There are several different anatomy ontolo-
gies, and development of a chicken anatomy ontology 
is underway by researchers at the AgBase databases 
and the Roslin Institute. The development of multiple 
ontologies to support annotation and analysis of phe-
notypic data (Mungall et al., 2010) is also underway, 
and these projects are likely to enable large-scale and 
comparative analysis of phenotypic traits across species 
in the near future.

However, despite the availability or recent develop-
ment of bio-ontologies, not all of these ontologies are 
as frequently used as the GO. Whereas the GO was 
one of the first bio-ontologies to be developed, there 
has also been a continual effort to annotate data to the 
GO, ensuring that data exists for analysis tools. More-
over, there is a 2-fold and complementary approach 
toward annotation to the GO. In the first approach, 

manual biocuration of the published papers provides 
detailed, species-specific functional data. Although this 
is necessarily time-consuming and costly, it provides a 
core of “gold standard” annotations that is used to test 
computational annotation tools and to develop analysis 
tools that use the GO data. These same data can also 
be transferred to other species where there is known 
functional orthology. The second approach is to develop 
computational pipelines for providing species-indepen-
dent “first-pass” functional annotation data for a large 
number of gene products. This approach rapidly pro-
vides breadth of annotation (i.e., most gene products 
have at least some GO annotation), but this annotation 
lacks species-specific, detailed functional information. 
Despite these limitations of computationally derived 
GO, the ability to rapidly add at least a first-pass func-
tional annotation for new species is one of the reasons 
that the GO is widely used for analysis of an increas-
ing number of species. As data acquisition increases 
due to next generation sequencing and the use of other 
“omics” approaches, there is a critical need to develop 
similar high-throughput annotation pipelines for other 
data types and other bio-ontologies.

Currently chicken is the only poultry species with a 
manual GO annotation effort (McCarthy et al., 2007b); 
computationally derived GO annotations are provided 
by both the European Bioinformatics Institute Gene 
Ontology Annotation (EBI GOA) Project (Dimmer et 
al., 2012) and by curators at AgBase (McCarthy et 
al., 2011; Table 2). To date (September 2012) there 
are 327,528 GO annotations for 67,735 chicken gene 
products and 62.6% of these annotations are compu-
tationally derived. In comparison, the next most com-
monly studied poultry species, turkey, has 99,429 GO 
annotations for 12,970 gene products and 99.9% of 
these are computationally derived, with the small re-
mainder being opportunistic annotation of turkey gene 
products identified while annotating related gene prod-
ucts from other species. This lack of functional data 
for most poultry species inhibits modeling of functional 
genomics data sets, and the lack of dedicated literature 
annotation means that many of the annotations pro-
duced will lack detail. However, recent work at AgBase 
to expand functional annotation to other agriculturally 

Table 2. Summary of Gene Ontology (GO) annotation for chicken gene products1 

Source
No. of GO  
annotations

No. of gene  
products

Manual GO annotation, GOA 3,169 563
Manual GO annotation, AgBase 121,161 40,272
Computational GO annotation, GOA 79,033 16,691
Computational GO annotation, AgBase 204,969 39,291
Total2 327,528 67,735

1The GO annotations for chicken were provided by AgBase and the EBI GOA Project. The GO annotation 
numbers are current as at September 1, 2012. 

2Note that totals are not additive as gene products are annotated using both manual and computational ap-
proaches.
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important species will provide some targeted manual 
biocuration for turkey gene products over the next few 
years.

Whereas sequence analysis provides one rapid and 
broad-based source of functional annotations, another 
approach is to transfer annotations between functional 
orthologs (Gaudet et al., 2011). Using this approach, it 
is possible to transfer the more detailed, manually de-
rived GO annotations to other poultry species where it 
is possible to identify a clear 1:1 ortholog with genes in 
other bird species. This same approach is used to trans-
fer information about pathways (Moriya et al., 2007), 
protein interactions (Yu et al., 2004; Huang et al., 
2007), and gene nomenclature (Burt et al., 2009). How-
ever this method presupposes 2 things: first, that func-
tional orthologs are identified, and second, that there 
is a core set of annotations in the reference species that 
can be transferred to the second species. A limitation 
to this approach is that it is not always easy to identify 
true functional orthologs in newly assembled genomes; 
typically, reciprocal sequence matches (using BLAST 
or BLAT) are used, which does not take into account 
synteny and may not always identify true orthologs 
from paralogs. Methods to more accurately and easily 
identify orthologs in newly sequenced genomes would 
contribute to both functional and structural annota-
tion. In addition, developing a core set of high-quality 
annotations in a reference species (such as chicken), 
would enable these data to be transferred to other poul-
try species where a functional ortholog is identified. 
However, in practice, functional information about an 
ortholog is not limited to a single species; chicken genes 
that do not have any functional information may be 
well studied in turkey or pigeon, and identifying the 
best sources of annotation to support poultry function-
al modeling may mean focusing on other bird species.

Annotation is a continual process. Just as reanno-
tating a genome will result in new gene sets and new 
exon-intron boundary annotations, functional annota-
tion is also continually improving, updating, and re-
newing. New functional information is added, rules for 
assigning computational annotations are continually 
reviewed, and obsolete data are removed (Rhee et al., 
2008). For example, reannotation of the FHCRC Chick-
en 13K cDNA v.2.0 microarray (GPL 1836) with up-
dated GO annotations changed the GO functions that 
were identified as being differentially expressed during 
Salmonella enterica infection of chickens (van den Berg 
et al., 2010). Thus, it is important to know the source 
of the annotation data used in modeling (where it was 
obtained from and when), to ensure that the latest and 
most up-to-date data are used.

Functional Modeling Strategies  
and Analysis Tools

Typical approaches for functional modeling of large 
data sets include examining GO summaries to ascer-
tain the overall function, GO Enrichment Analysis to 

determine which functions are statistically enriched in 
a data set, pathways analysis, and network analysis. 
These approaches are complementary, visualizing the 
same data in different ways that are only partly over-
lapping, and we will discuss each approach below.

GO Summary Using Slim Sets. The initial output 
of a statistical analysis to identify differentially ex-
pressed genes is often a daunting list of genes or gene 
products. For arrays, this may be a list of several thou-
sand transcripts, whereas for proteomics and RNAS-
eq data sets this number is often orders of magnitude 
larger. A useful first step is to summarize this list by 
grouping the gene products into functional categories. 
As of August 2012 there are 38,120 GO terms (ontol-
ogy version 1.3493), so clearly using the GO can result 
in a large number of functional categories. Instead, GO 
Slim sets are truncated forms of the GO—terms that 
are manually picked to represent broader biological cat-
egories—that may be used for summarizing function 
(Rhee et al., 2008). There are currently 6 different GO 
Slim sets (Table 3) that have been developed by differ-
ent groups, and 3 of these are specifically designed for 
bacteria, plants, and yeast. A fourth Slim set may be 
useful in some specialized instances but has not been 
updated since 2002 and is not recommended for general 
use. Among the remaining 2 GO Slim sets that are use-
ful for summarizing poultry data, there are significant 
differences in the number of GO terms used and there-
fore the results will be remarkably different. The Ge-
neric GO Slim set (developed by the GO Consortium) 
has a total of 127 terms, whereas the PIR GO Slim set 
(developed by Darren Natale from the Protein Informa-
tion Resource) contains 464 GO terms. It is strongly 
recommended that researchers investigate the use of 
both GO Slim sets to see which terms may best suit 
their experimental conditions (e.g., metabolism or im-
mune function or development terms).

AgBase provides the GOSlimViewer tool (McCarthy 
et al., 2007b), an online tool that enables research-
ers to upload a truncated GO annotation set for their 
gene list and summarize it using a selected GO Slim 
set. The results and presented as a tab-separated table 
that may be charted in any format using standard Ex-
cel functions. Summarized functions are presented as 
Molecular Function, Biological Process, and Cellular 
Component, and these may be charted independently 
or combined. AgBase also provides a file that outlines 
the GO SlimViewer accession details for each of the 
GO Slim terms. This file can be used to identify the 
gene products summarized to each of the GO summary 
terms. This enables the researcher not only to summa-
rize function but to retrieve the genes categorized into 
any one of these functions.

More recently a tool for summarizing GO annota-
tions for specific gene sets is REVIGO (Supek et al., 
2011). This tool is markedly different from GO Slim 
summaries in that it uses a clustering algorithm to de-
velop a representative subset of GO terms and may 
result in more informative functional terms. In addi-
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tion, the resulting GO term sets are visualized in mul-
tiple ways, including downloadable tables and different 
graphic displays.

GO Enrichment Analysis. The GO enrichment 
analysis uses statistical analyses to identify GO terms 
that are enriched in a functional data set relative to 
a background set. For example, researchers may want 
to identify functions overrepresented in a treatment 
compared with a control set, or in sick compared with 
healthy data sets. This differs from GO Summary using 
Slim set because a term may represent a large propor-
tion of the summarized function, but if it is also com-
monly found in the background set, then it will not 
be considered enriched. This type of analysis accounts 
for the fact that not all GO terms are equally rep-
resented; for example, GO:0008152 metabolic process 
and GO:0005488 binding are more commonly found be-
cause they are general terms well represented by com-
putational mapping.

There are 3 main approaches to doing functional en-
richment (Huang et al., 2009a). The first is singular 
enrichment analysis (SEA), which was initially estab-
lished by older enrichment analysis tools and is proven 
to be effective. In SEA enrichment, a differentially ex-
pressed set of genes is compared with a background. 
Examples of enrichment tools that use SEA are GOStat 
(Beissbarth and Speed, 2004), Onto-tools (Khatri et 
al., 2007), and DAVID (Huang et al., 2009b). In con-
trast, gene set enrichment analysis—sometimes referred 
to as also Parametric Analysis of Gene Set Enrichment 
or PAGE—examines all genes in a set (e.g., all genes in 
an array) and their expression values and calculates en-
richment against a randomly shuffled background. DA-
VID and AgriGO (Du et al., 2010) enable the user to 

do gene set enrichment analysis. This latter approach 
avoids arbitrary expression cut-off values and allows 
for minimally changing genes but has the disadvantage 
of sometimes producing very long GO term lists. One 
method for dealing with long lists of enriched func-
tions is to cluster these functions based upon semantic 
similarity or, for ontologies terms, based on their rela-
tionships. Although not many tools currently support 
poultry analyses, REVIGO (Supek et al., 2011) allows 
users to input a simple list of GO terms and enrichment 
values from other tools.

A seemingly bewildering array of GO Enrichment 
Analysis tools is available, and the GO Consortium 
website provides a large but not comprehensive list of 
these tools. However, only a fraction of these enrich-
ment tools are able to analyze poultry data, and the 
shorter list of relevant enrichment tools is available as 
part of the AgBase Educational Resources section (Ta-
ble 4); every effort is made to keep this list up to date. 
The more commonly used GO Enrichment tools among 
this list include Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID; Huang et al., 
2009b), AgriGO (Du et al., 2010), GOStat (Beissbarth 
and Speed, 2004), and Onto-Tools package (Khatri et 
al., 2007). The list of tools that can be used to analyze 
poultry functional genomics data sets can be expanded 
by considering enrichment tools that allow users to up-
load their own GO data [e.g., GOStat, Funcassociate 
2.0 (Berriz et al., 2009), Onto-Tools]. These allow re-
searchers to analyze nontraditional species but also en-
able researchers to add their own GO annotations and 
include these data in their analysis.

Although the ability to analyze data from the spe-
cies of interest is a primary consideration for selection 

Table 3. Properties of Gene Ontology (GO) Slim sets1 

GO Slim set Developed by Date updated No. GO terms

Generic GO Consortium September 2012 148 total terms
70 BP terms
43 MF terms
35 CC terms

GOA Whole Proteome N. Mulder, M. Pruess (EBI GOA) November 2002 62 total terms
23 BP terms
27 MF terms
12 CC terms

PIR Darren Natale (PIR) September 2012 464 total terms
204 BP terms
75 MF terms
185 CC terms

Plant Slim TAIR August 2012 100 total terms
46 BP terms
27 MF terms
27 CC terms

Yeast Slim SGD September 2012 167 total terms
100 BP terms
43 MF terms
24 CC terms

TIGR Prokaryote Michelle Gwinn-Giglio (UMD) August 2009 202 total terms
202 BP terms

1The GO Slim sets are used to summarize GO function to broader terms in the ontologies. Several Slim sets are available, and they are shown here 
along with the number of GO terms each contains (BP = biological process, MF = molecular function, CC = cellular component). Developers include 
biocurators from the GO Consortium, EBI GOA, the Protein Information Resource (PIR), The Arabidopsis Information Resource (TAIR), Saccharo-
myces Genome Database (SGD), and University of Maryland (UMD).
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of a GO Enrichment Analysis tool, many other prag-
matic factors contribute to the selection of the analysis 
tool. For example, many of the tools mentioned here 
are available as web-based interfaces. However, the On-
to-Tools package has an online login and uses a Java 
plugin that may not be popular for those who want a 
simpler interface. The tools use different methods for 
mapping accessions to GO annotations and are on dif-
ferent update cycles, which affects how much functional 
annotation is included in the analysis and may influ-
ence the choice of tool. Critically, tools should have a 
prefiltering step to remove any GO annotation with a 
qualifier (e.g., “NOT” annotations, for review, see Rhee 
et al., 2008); however, this is not always easy for a user 
to determine. Another feature that is popular is the 
option to analyze multiple data types; for example, DA-
VID combines GO, pathways, and interaction analyses.

Another consideration is that all of the enrichment 
tools developed to date are based upon microarray data 
sets. Current algorithms do not handle biological rep-
licates very well; that is, correcting for multiple test-
ing of differential expression in RNASeq (e.g., using 
the R package DESeq) creates very small differentially 
expressed data sets. Development and application of 
programs that account for RNASeq biases is critical. 
Likewise, there are inherent biases in tools for model-
ing RNASeq expression data that are not considered in 
existing tools based upon microarray platforms (e.g., 
GO terms that have a higher than average number of 
shorter transcripts are more likely to be falsely overrep-
resented). To our knowledge, there is only one enrich-
ment tool that accounts for these biases (Young et al., 
2010), although this tool is not currently available as a 
web-based interface.

Pathways and Network Analysis. Whereas GO 
analyses focus on individual and larger biological pro-
cesses, pathways and network analyses describe differ-
ent aspects of functional annotation. It is worthwhile 
to clarify that the GO Biological Process terms include 
some pathways but not all; in addition, it includes oth-
er processes that are not pathways (e.g., development, 

immune function, and so on). Therefore, although a 
GO enrichment analysis may include some pathways, 
this may not be a comprehensive list.

The main pathways databases are Reactome (Croft 
et al., 2011) and KEGG (Tanabe and Kanehisa, 2012), 
and most commercial pathways analysis tools use data 
from both of these databases. Notably, almost all path-
ways data for poultry are based upon identifying or-
thologs from other species involved in pathways and 
almost all of these data are transferred automatically 
without manual review. The exception is Reactome, 
which has a manual biocuration effort for chicken path-
ways (Gillespie et al., 2011). This means that pathways 
data will be as good as our ability to clearly identify 
orthologs between poultry and mammalian species. 
Further, these data will not account for species-specific 
variation to generic pathways. The Reactome database 
has an online tool that allows researchers to analyze 
pathways enrichment from gene expression data and 
there are commercially available tools that also use 
pathways data from public databases and do pathways 
enrichment analyses. Several of the newer commercial 
pathways analysis packages combine GO and pathways 
analysis. Another option is the freely available Path-
ways Express software from the Onto-Tools (Khatri et 
al., 2007) suite of programs.

Whereas all pathways are networks, not all networks 
are pathways. Network analysis looks at the interac-
tions between elements in a gene set using molecular 
interaction; whereas pathways can be considered as a 
series of interactions, they are also directional and pro-
duce a clear outcome or products. Networks analysis (at 
least for protein-protein interactions) is not directional 
and can point to key gene products in the biological 
system and predict the effects of perturbation of this 
system. Network analysis relies on molecular interac-
tion data and currently for poultry most of these data 
are transferred from other species based upon orthol-
ogy or homology rather than direct experimental evi-
dence. Interaction data may be obtained from a large 
number of molecular interaction databases, but more 

Table 4. Gene Ontology (GO) enrichment analysis tools that support poultry data analysis1 

Enrichment tool Platform Species
Upload your  
own GO

AgriGO Online Chicken Yes
BiNGO Cytoscape plugin Wide range Yes
CLASSIFI Online Wide range No
DAVID Online Wide range of species No
FuncAssociate Online Chicken Yes
GENECODIS Online Chicken No
GeneMerge Online Chicken No
GFINDer: Genome Function Online Many Affy arrays No
GOEAST Online Includes Affy, Agilent, Illumina arrays No
GOstat Online All UniProt species Yes
GraphWeb Online Chicken No
Onto-Compare Online (login) Wide range Yes
Onto-Express Online (login) Wide range Yes
Ontologizer Webstart/desktop Limited Yes

1Whereas many enrichment tools support analysis of chicken data, other tools allow researchers to upload their own data sets for analysis.
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recently the International Molecular Exchange (IMEx) 
consortium is working to produce standard file formats 
for data sharing across these databases and developing 
standard annotation procedures (Orchard et al., 2012).

The most commonly used, freely available network 
analysis software is Cytoscape, (http://www.cytoscape.
org/), which also visualizes pathway data. Cytoscape is 
used to find active subnetworks/pathway within an ex-
pression data set, and this software has many addition-
al plugins (or “apps”) available to do network visualiza-
tion, GO analysis clustering, and so forth. Commercial 
software for functional analysis of gene expression data 
will also often include network analysis.

A special case instance of network analysis that re-
lates to many poultry gene expression studies is analy-
sis of host-pathogen interactions using network analy-
sis. This is critical for many disease-related studies in 
poultry but is hindered by lack of data to support these 
analyses. Although specific molecular interaction data 
are sparse for poultry species, even fewer data exist for 
host-pathogen molecular interactions and most of these 
data focuses on human-related pathogens. The Host 
Pathogen Interaction Database specifically integrates 
experimental interaction data from several public da-
tabases into a single, nonredundant web-accessible re-
source and does contain the available chicken-pathogen 
interaction data (Kumar and Nanduri, 2010).

Concluding Thoughts  
on Functional Modeling

The final part in the process of functional model-
ing is bringing together the information obtained from 
the different modeling strategies to create a coherent 
whole. Because this process relies on a detailed under-
standing of both the biological system being studied 
and the experimental design, it cannot be programmed 
into any functional analysis tool but rather relies on the 
researcher’s biological knowledge. However, some con-
siderations may be helpful. First, functional modeling 
is both complementary and iterative. This means that 
information gained using any one modeling approach 
can be used to make informed choices about other mod-
eling approaches or to better focus the initial modeling. 
For example, if a GO summary analysis indicates a 
preponderance of transcripts summarized to a general 
term such as metabolism (GO:0008152 metabolic pro-
cess), the researcher may consider doing a pathways 
analysis identify the specific metabolic pathways repre-
sented in this subset of transcripts. Second, researchers 
should note that not all analysis tools will accept/iden-
tify all of the data in their data set. Typically a certain 
proportion of gene products may not included in the 
analysis because their accessions are not recognized or 
they have no functional annotation. For example, EST 
sequences represented on arrays may not be included 
in network analysis because they cannot be linked to 
a gene or because that gene has no interaction data. 

It is important that this data loss is minimized and 
accounted for where possible when developing an over-
all model. Third, researchers need to consider not only 
aspects of their functional modeling that are already 
known about their system but also new information 
gained during the analysis process. Finally, we reiterate 
that functional modeling must be driven by the biology 
of the system being studied, rather than by the results 
of any bioinformatics analysis.

As poultry researchers increasingly adopt new se-
quencing technologies, we will have more opportunities 
to refine genome annotations for these species. How-
ever, with the move from traditional functional genom-
ics platforms (such as arrays) to newer gene expression 
technologies based on transcriptome sequencing and 
proteomics, there is an increasing need to apply these 
data not only to answer fundamental questions about 
poultry production but also for reusing these same data 
to capture more information to support functional mod-
eling (such as structural annotation and tissue expres-
sion data). Analysis of gene expression using RNASeq, 
because it relies on alignment to an existing genome, 
requires that we know the gene within the genome and 
can correctly assemble and align expressed transcripts. 
Moreover, like all functional genomics technologies, 
RNASeq comes with its own inherent biases, limita-
tions, and capacity that need to be considered when 
doing bioinformatic tool development to support func-
tional modeling. In addition to providing more annota-
tion to support functional modeling tool and resources, 
there is also the need to integrate multiple types of data 
from multiple sources: data from genome sequencing, 
orthologies, expression, pathways, and interactions all 
need to be combined in a way that enables research-
ers insights into the biology of their system of inter-
est. With improved data integration comes the ability 
develop new tools that more easily integrate genotype, 
phenotype, statistical prediction, and functional model-
ing.
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