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Abstract

Assessing risk from a novel pest or pathogen requires knowing which local plant

species are susceptible. Empirical data on the local host range of novel pests are

usually lacking, but we know that some pests are more likely to attack closely

related plant species than species separated by greater evolutionary distance. We

use the Global Pest and Disease Database, an internal database maintained by the

United States Department of Agriculture Animal and Plant Health Inspection

Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to

evaluate the strength of the phylogenetic signal in host range for nine major

groups of plant pests and pathogens. Eight of nine groups showed significant

phylogenetic signal in host range. Additionally, pests and pathogens with more

known hosts attacked a phylogenetically broader range of hosts. This suggests

that easily obtained data – the number of known hosts and the phylogenetic dis-

tance between known hosts and other species of interest – can be used to predict

which plant species are likely to be susceptible to a particular pest. This can facili-

tate rapid assessment of risk from novel pests and pathogens when empirical host

range data are not yet available and guide efficient collection of empirical data for

risk evaluation.

Introduction

Novel interactions between plants and pests or pathogens

pose economic and ecological threats to agricultural and

wildland ecosystems (Pimentel et al. 2000). Novel pest–
plant interactions (‘pest’ used here collectively to mean nat-

ural enemies of plants, be they microbes, animals, plants,

viruses, etc.) emerge when humans introduce plant pests

accidentally (e.g., through trade) (Goodell et al. 2000) or

purposefully (e.g., biocontrol) (Barton 2004); when pests

arrive autonomously to a new region through range expan-

sion (e.g., facilitated by climate change) (Anderson et al.

2004); or when novel pests evolve in situ (e.g., through

hybridization) (Brasier 2001). The task of governmental

phytosanitary agencies is to ensure national or regional

plant biosecurity through an array of preventative and

management activities such as quarantine, port-of-entry

interception, eradication, and control of novel pests

(Magarey et al. 2009). But not all novel pests are significant

threats (Parker et al. 1999), and because prevention and

management efforts incur significant economic and politi-

cal costs, pest risk assessment is essential to determine

appropriate actions. Robust analytical tools, based on

sound scientific understanding of plant–pest relationships,
are critical to help evaluate which pests and pathogens rep-

resent risks that warrant action (Campbell 2001; Briese

2003; Magarey et al. 2009). Here, we show how the evolu-

tionary structure of host ranges of plant pests can provide

the basis for a useful new tool in pest risk analysis when

empirical data are limiting, allowing a rapid assessment of

which plant species in an area are most likely to be suscepti-

ble to a novel pest.

Plant pests and pathogens are often able to attack a num-

ber of closely related species (Gilbert and Webb 2007).
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Interactions between plants and their pests and pathogens

are governed strongly by the presence (or absence) of a

variety of plant chemical, morphological, and life-history

traits (Herms and Mattson 1992; Coley and Barone 1996;

Bradley et al. 2003; Carmona et al. 2011). Such traits are

often phylogenetically conserved – closely related plants

have more similar suites of traits that are important to pest

interactions than do more evolutionarily distant plant

species (Fluhr and Kaplan-Levy 2002; Parker and Gilbert

2004; Agrawal 2007; Boller and Felix 2009; Pearse and Hipp

2009). This generates a phylogenetic signal in host ranges,

where closely related plant species should be more likely to

share a particular pathogen or pest, than should distant rel-

atives (Fig. 1). How close, then, is close enough for two

hosts to share a pathogen or pest? Is the evolutionary struc-

ture in host ranges a step function – pests can attack many

species within a genus, but not beyond – or does the proba-
bility of sharing hosts decline continuously as a function of

evolutionary distance?

Empirical studies support the expectation of a phyloge-

netic signal in host ranges of fungal plant pathogens.

Cross-inoculations across many plant species with foliar

pathogens show that most fungal pathogens are polypha-

gous (i.e., attack multiple hosts) and that the likelihood

that a pathogen can cause disease on two particular plant

species is greatest among congeneric species, strong within

plant families, and declines gradually even to the most

ancient evolutionary distances within flowering plants

(Gilbert and Webb 2007). Similar patterns of phylogenetic

signal in host range are evident for herbivorous insects

(Novotny et al. 2002; Weiblen et al. 2006; Pearse and Hipp

2009) and pathogens of animals (Pedersen and Davies

2009). In fact, although there are clear examples of where

the distribution of traits that are important to interactions

with natural enemies can be independent of phylogeny

(e.g., Becerra and Venable 1999), phylogenetic conserva-

tism is common for ecological interactions of all types

across the entire tree of life (Gómez et al. 2010). Phyloge-

netic distance between potential host species thus appears

to be a good, integrated surrogate for the differences in

plant traits that determine the host ranges of plant pests

and pathogens. It is also much easier, faster, and cheaper to

use existing dated phylogenetic supertrees (large phyloge-

nies constructed from multiple source phylogenies) (Davies

et al. 2004) to quickly estimate phylogenetic distance

among plant species (Webb and Donoghue 2005) than it is

to determine which plant traits are important to a particu-

lar pathogen, or to empirically test a large number of hosts

for susceptibility to a novel pathogen. If this continuous

phylogenetic signal is robust across the broad range of

plant pests (e.g., bacteria, invertebrates, parasitic plants,

viruses), it suggest an important new tool for pest risk

assessment novel plant pests, as well as a useful framework

for ecological researchers studying species interactions.

However, evaluating the utility of this phylogenetic signal

first requires examination of phylogenetic signal in host

range across a broad diversity of hosts and pest types.

The United Stated Department of Agriculture has sys-

tematically gathered global records of occurrence of pests

and pathogens on plants for many decades (Magarey et al.

2009). The United States Department of Agriculture

(USDA) databases, as well as similar compendia produced

by CABI, are used globally by governmental agencies and

agronomists to make phytosanitary decisions, including

those that affect trade, quarantine, and eradication efforts.

Figure 1 Expected phylogenetic patterns in host ranges of plant pests

and pathogens. Phylogenetic signal in the host range of pests is a mea-

sure of the probability that two hosts (two branch tips on the phyloge-

netic tree) would share a particular pest, given the phylogenetic

distance between the hosts. (A) The host ranges of most pests and

pathogens are expected to show a phylogenetic signal, with a tendency

to be clustered within an evolutionary clade (filled circles). The probabil-

ity of sharing a pest (prob(S)) decreases quickly with increasing phyloge-

netic distance between the hosts. (B) Phylogenetically dispersed host

ranges (open circles) should be less common, because phylogenetically

dispersed hosts should present diverse defensive traits that would be

challenging for a single pest to overcome. (C) Pests with broad host

ranges are likely to show a phylogenetic signal (open diamonds), where

expanded host range comes with the ability to attack several hosts

within multiple clades. Phylogenetic distance is measured as time of

independent evolution between two taxa, represented here by the thick

solid line (short phylogenetic distance) and thick dashed line (long dis-

tance). Time of independent evolution is twice the age to most recent

common ancestor (vertical dotted lines).
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The databases are also used for ecological research. A pub-

licly accessible database of Fungus-Host Distributions

maintained by the USDA Agricultural Research Service

(Farr et al. 2007), based primarily on published records of

fungi on plants and plant products, has been used for a

number of studies on the ecology of plant diseases (e.g.,

Mitchell and Power 2003; van Kleunen and Fischer 2009).

The USDA Animal and Plant Health Inspection Service –
Plant Protection and Quarantine Division (APHIS-PPQ)

maintains the Global Pest and Disease Database (GPDD)

for exotic pest risk analysis (Magarey et al. 2009). Initiated

in 2003, the GPDD is a compendium of over 3100 pest spe-

cies of agronomic importance that currently are either not

present in or are restricted in their United States distribu-

tion. This database contains approximately 137 000 pest-

host records on over 18 500 plant species from around the

globe. Data are gathered from publications, more than 300

compiled lists and databases, border interceptions, pest

surveys, pest and commodity risk assessments, and publicly

available source material. Data from the GPDD are critical

to decisions that affect trade regulation, quarantine, and

eradication activities. Nevertheless, like all such databases,

the GPDD includes significant assumptions and limita-

tions. Use of the data from the GPDD in this study was

arranged by means of a contractual cooperative agreement

between G. Gilbert, North Carolina State University and

APHIS-PPQ-CHPST.

The inherent assumptions and limitations of host range

databases like the Fungus-Host Distributions database and

the GPDD could systematically bias analytical results for

studies of host range of pests and the number of pests on

particular hosts. Limitations include survey bias, informat-

ics bias, and structural bias. Survey bias means that pest

surveys that form the basis for publication and interception

records have a strong bias toward plants important in agri-

culture, horticulture, and forestry in regions with many

active researchers in phytosanitary and research institutions

and have much more limited coverage of wildlands species.

As such, knowledge of pests of environmental hosts or

crops of limited regional importance are unlikely to be

complete. Analyses that use the number of recorded hosts

or the diversity of recorded pests in the database as indica-

tions of pest impacts (Mitchell and Power 2003; van

Kleunen and Fischer 2009) are particularly vulnerable to

systematic biases. Some researchers have tried to correct for

this bias by using an index of effort of investigation [e.g.,

standardized by the number of publications on a particular

plant species (Gibson et al. 2010)]. Informatics bias results

from unstable and inconsistent taxonomy (e.g., anamorph

and teleomorph names for ascomycete fungi), unverified

identifications, and geographic variation in coevolutionary

dynamics (i.e., genotypic variation in virulence/resistance).

Careful use of pest nomenclature, as well as maintenance of

current taxonomic synonymies, is essential to avoid exag-

gerated apparent diversity of pests on a single host (when

multiple names are used for the same entity) or exaggerated

host ranges (when a single pest name is applied to several

cryptic biological entities). For example, queries to the

USDA Fungal-Host Distributions database produce large

numbers of synonyms that appear as separate pests, requir-

ing diligent data corrections on the part of the user. Finally,

host range databases have a structural bias because they

include only records of incidence of a pest or pathogen on

a plant host and do not record the absence of a pest on a

particular host. This is particularly problematic for pests

and plants that are geographically restricted (such as

emerging pests or endemic hosts); geography may have so

far prevented a pathogen from being observed on a plant

on a different continent, but that host may still be suscepti-

ble. Because these databases lack specific data on which

hosts are not susceptible, analyses of host range based on

the databases require an explicit assumption that the

‘zeroes’ are true, which likely leads to many false negatives.

Estimates of pest diversity and host range from such data-

bases are thus likely to be lower bounds.

By definition, there are few antecedents to help evaluate

which local plants species are susceptible to a novel plant

pest. Widespread agricultural crop species (e.g., rice, beans)

are likely to have robust pest records, but there will usually

be little information on which regional crops or native

environmental plant species are susceptible in the region of

introduction. When a pest or pathogen is introduced inten-

tionally into a new region (e.g., for biological control of an

invasive weed) or arrives without human intent, prior

knowledge and rapid assessment of locally susceptible hosts

is imperative. Empirical host range testing (e.g., Weide-

mann and Tebeest 1990; Gilbert and Webb 2007) is slow,

expensive, and impractical at the scale necessary in a rap-

idly changing, globalized world unless there is clear guid-

ance for prioritizing likely hosts. In the absence of existing

empirical data, phytosanitary agencies have developed

some phylogenetic rules-of-thumb: a pest may be consid-

ered a threat if it is known from a plant species in the same

genus as a local species of concern (APHIS 2005); concern

about host range is ranked as low if the pest attacks species

within a single genus, medium if the pest is limited to a sin-

gle family, and high if it attacks multiple families (PPQ

2003); which plant species are selected for host range test-

ing of pathogens being considered for release as biological

control agents often follows a ‘centrifugal phylogenetic

method’ (Wapshere 1974; Briese 2003). However, more

robust analytical tools that can quickly and inexpensively

provide information on which local plant species are likely

to be hosts for a particular novel pest would better guide

phytosanitary risk analysis and direct efficient use of subse-

quent empirical tests.

© 2012 Blackwell Publishing Ltd. 3
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Here, we use host range data from the USDA APHIS-

PPQ GPDD to measure the strength of a phylogenetic sig-

nal in host range across each of nine major groups of plant

pests and pathogens and to evaluate the potential for evolu-

tionary tools to inform pest risk analyses. First, we explore

the pests’ host-breadth structure as recorded in the APHIS-

PPQ GPDD. Next, we test for phylogenetic signal in host

range within each of the major groups of pests and patho-

gens and compare the phylogenetic signal to that deter-

mined empirically for fungal foliar pathogens, to evaluate

whether the analysis is robust to assumptions required

because of the structural bias in host range databases (i.e.,

no nonhost records). Third, we evaluate how the known

number of hosts of a pest interacts with phylogenetic signal

to provide a more robust estimate of the likelihood of shar-

ing across particular hosts. Finally, we suggest how this

understanding of the evolutionary structure of host range

can help evaluate which local plants are most likely to be

hosts for a novel pest or pathogen.

Materials and methods

We based our analyses on data taken from the USDA

APHIS-PPQ GPDD (APHIS-PPQ GPDD). We extracted all

recorded plant pests from 210 genera of flowering plants.

Pests were classified to species or to finer levels if appropri-

ate (e.g., pathovars of bacteria). Host plants were grouped

to genus; if a pest occurs on any species in a genus, that

genus was considered susceptible. Each pest species/host

genus combination was scored as 1 (host is susceptible) or

0 (host is assumed to be resistant). Grouping to genus pro-

vides us with a conservative test of phylogenetic signal,

given that it is well established that pests and pathogens are

likely to be able to attack multiple species within a genus

(Novotny and Basset 2005; Farr et al. 2007). In addition,

taxonomic uncertainty for plant species for host records at

a global level, the poor coverage of sampling across many

species within a genus, and the lack of readily accessible

phylogenetic trees within many plant genera all limit the

utility analyses at the level of host species. At the same time,

grouping pest records within a genus provides the maxi-

mum information about phylogenetic signal at farther

phylogenetic distances, where host ranges are less well known.

We took a re-sampling approach to the analysis of the

APHIS-PPQ GPDD data to (i) make the analysis compara-

ble to the empirical work on phylogenetic host range in

plant pathogenic fungi established by Gilbert and Webb

(2007), (ii) reflect the practical situation of finding a novel

pathogen on a single plant host, and (iii) avoid problems

with inflated degrees of freedom and pseudoreplication,

because the probability that a pest found on plant A also

occurs on plant B is not independent of the likelihood that

a pest from plant B also attacks plant A.

Specifically, for each pest species, we randomly selected

one host genus from among the hosts on which the pest

had been reported, and assigned it as the ‘source’ host. For

each of the other 209 ‘target’ plant genera in the database,

we then recorded whether the genus was listed in the data-

base as susceptible or not and the phylogenetic distance

from source to target genus. We also recorded the total

number of known host genera in the database for that pest

species. This was repeated for all pest species, using one

randomly selected source genus per pest.

We then analyzed those data using logistic regression,

where the response variable was 1 (susceptible) or 0

(assumed resistant). For the first logistic analysis, which

parallels the analysis of empirical data from Gilbert and

Webb (2007), the independent variable was the phyloge-

netic distance between source and target plant species

[transformed as log10(phylodistance + 1)]. For the subse-

quent logistic analysis, we included the phylogenetic dis-

tance term and the number of known hosts for that pest.

The interaction term was not included in final models,

because it was not significant (see Results). Intercept and

slope coefficients were recorded. This was repeated for

1000 total runs, with new random selections of source plant

hosts for each pest in each run, and recording all 1000 sets

of coefficients. We calculated the median intercept and

slope coefficients and the 95% confidence interval across all

runs. If the 95% confidence interval of a coefficient did not

include zero, it was considered significant. To illustrate the

confidence intervals graphically, we also captured predicted

values of the probability of sharing a pathogen at 5-My

intervals, for each of the 1000 models, and then calculated

the 0.025, 0.5, and 0.975 quantiles to use for 95% confi-

dence intervals of the curves.

This basic approach was used separately for each of nine

biologically meaningful groups of pest and pathogens: bac-

teria, fungi, oomycetes, insects, mites, mollusks, nema-

todes, viruses, and plants. These divisions were determined

based on pests and pathogens belonging to different king-

doms (bacteria, fungi, oomycetes, plants, viruses, and ani-

mals) and very different life-history and feeding strategies

(insects, mites, mollusks, and nematodes within the

animals). Further refinements in analysis of variation

across life-history strategies are left for future work.

Phylogenetic distances were calculated from the APG II

supertree of Davies et al. (2004), which included dated

nodes given by Wikstrom (Wikstrom et al. 2001). This ver-

sion was used to be consistent with earlier empirical work,

but using more recent structure of APG III et al. (2009)

should have little effect on the model. We used Phylomatic

version included in Phylocom v4.1 (Webb et al. 2008) to

create a pruned ultrametric tree of all 210 Angiosperm gen-

era in the database, with branch lengths that reflected the

estimated time between branching events. From this tree,

© 2012 Blackwell Publishing Ltd.4
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we used the phydist function in the R package Picante

(Kembel et al. 2010) to calculate pairwise phylogenetic dis-

tances in My for each pair of plant host genera (given as

time of independent evolution, which is twice the time to

most recent common ancestor).

Analyses were completed using R statistical framework,

with functions from the Picante v. 1.2-0 (http://cran.r-pro-

ject.org/), Vegan v. 1.17-8 (http://cran.r-project.org/), and

Stats v. 2.12.2 (http://cran.r-project.org/)packages.

Results

Structure of host ranges and pest diversity in the GPDD

The subset of the GPDD data used in this analysis com-

prised 1670 pest species and 210 host angiosperm genera

(Table S1). Pest species included 52 bacteria, 212 fungi, 61

oomycetes, 870 insects, 119 mites, 45 mollusks, 105 nema-

todes, 71 parasitic plants, and 135 viruses (Table S2). Of

the 350 700 possible host–pest combinations in the data-

base, 15 328 (4.37%) were confirmed host records for a

pest; we assumed (conservatively) that the rest were incom-

patible interactions.

The microbial pathogens (bacteria, fungi, and oomyce-

tes) showed narrower median host ranges than did pests

and viruses (insects, mites, mollusks, nematodes, plants,

and viruses) (Figs 2 and S1, Tables S3 and S4). Of the

microbial pathogens, about half (42–55%) were recorded

from a single host genus (median number of hosts 1 or 2),

whereas the pests+viruses ranged from 18% to 33% host

genus specialists (median 4 or 5) (Fig. 2, Table S3).

The median plant genus had 52 recorded pests (mini-

mum 7, maximum 426, of a total of 1670 pest species in the

database). The median number of pests per host genus was

32 for insects, 7 for fungi, 4 for mites, and 1 pest per host

genus for the remaining pest groups (Fig. S2, Table S5).

Phylogenetic signal in host ranges of different kinds of

plant pests

The probability that two host genera share a pest or patho-

gen declined significantly with phylogenetic distance

between the hosts, for all groups of pest and pathogens

except mollusks (Table 1, Figs 3 and S3–S5). Viruses show
a significantly steeper slope than other groups, but the

remaining groups show significant overlap in estimates of

the slope of the phylogenetic signal (Table 1, Fig. S3). The

directly comparable logistic regression from empirical host

range testing of necrotrophic fungal pathogens of tropical

tree leaves (Gilbert and Webb 2007) was logit(S) =
2.9113 � 1.5944*[log10(distance + 1)]. Estimates for a

much more phylogenetically diverse collection of fungi

from the GPDD showed a similar pattern, but with a stee-

per slope for the effect of phylogenetic distance

(median = �3.3249; 95% CI �3.7439 to �2.8019).

Interaction between host breadth and phylogenetic signal

We expected that pests with a greater number of known

hosts would be more likely to share multiple hosts across

Figure 2 Number of known hosts for pests in each of each of nine

major groups. The empirical cumulative distributions for number of

known hosts for bacteria, fungi, and oomycetes (microbial pathogens)

do not differ significantly from each other (K-S test, P > 0.08 for all),

and the distributions for insects, mites, mollusks, nematodes, viruses,

and plants (pests + viruses) do not differ significantly from each other

(P > 0.15 for all). The microbial pathogen distributions differ signifi-

cantly from all the pests+virus distributions (P < 0.035 for all) except for

bacteria versus mites, mollusks, and nematodes (P > 0.08). Details

given in Fig. S1.

Figure 3 Phylogenetic signal in the likelihood that plants share a com-

mon pest. Phylogenetic signal in the probability that a pest or pathogen

from a source host also attacks a target host. Curves are predicted from

logistic regressions for each major group of pests, using coefficients as

given in Table 1. All slopes except mollusks are significantly different

from zero. Additional details in Figs S3-S5.

© 2012 Blackwell Publishing Ltd. 5
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all phylogenetic distances (i.e., the probability curves would

shift upward with more known hosts). Analyses of each of

the nine groups of pests and pathogens supported this

expectation (Figs 4 and S6). The coefficients for phyloge-

netic distance were all significantly lower than zero, and

coefficients for the number of known hosts were all signifi-

cantly greater than zero (Table 2). We included only

the main effects in the model, because when we included

the interaction term in the model (i.e., Phylogenetic

distance*Number known hosts), the interaction term was

significantly different from zero for only two groups, and

then, the main effect of known hosts was not significant

(Table S6).

Discussion

Structure of host ranges and pest diversity in the GPDD

The number of hosts known to be attacked by a particular

pest or pathogen and the number of pests and pathogens

known from a particular plant genus are both likely to

underestimate the true numbers. Exhaustive surveys of host

range or pest associates are rare and then are usually

restricted to small geographic areas. Nevertheless, the glo-

bal scope of the GPDD data provides the best current

opportunity to examine the structure of plant–pest associa-
tions for a broad diversity of plants and pests of economic

and ecological importance.

Microbial pathogens (fungi, bacteria, and oomycetes)

showed significantly more host specialization than did the

pests (insects, mites, mollusks, nematodes, parasitic plants)

and viruses. The structure of host ranges for viruses may be

more similar to that of pests than pathogens because the

host range of many plant viruses is functionally determined

by that of their arthropod vectors (Gray and Banerjee

1999). The shape of the histograms (Fig. S1), as well as the

‘S’ shape of the cumulative distribution curves for the

pest + virus groups (Fig. 2), suggests the possibility of

superimposed curves from two distinct life-history strate-

gies: one strongly host specialized and another more

polyphagous, the second with a peak of host diversity at

4–15 plant genera. Feeding guilds of tropical herbivorous

insects show strikingly different patterns of host specificity,

Table 1. Phylogenetic signal in pest sharing between plant host genera.

Pest group (n)

Coefficients 95% confidence intervals

b0 b1 b0 b1

Bacteria (30) 3.2613 �2.9706 1.5581–4.3791 �3.4605 to �2.2215

Fungi (95) 4.3961 �3.3249 3.1958–5.3539 �3.7439 to �2.8019

Oomycetes (32) 2.0763 �2.6679 �0.8020–3.6867 �3.3745 to �1.4216

Insects (637) 3.2441 �2.7004 2.7108–3.7216 �2.9073 to �2.4694

Mites (87) 1.9584 �2.1681 0.3266–2.9620 �2.6039 to �1.4625

Mollusks (37) �0.4667 �1.1391 �4.5587–1.5261 �1.9896 to –0.5920

Nematodes (70) 2.7157 �2.6249 1.8376–3.4603 �2.9498 to �2.2445

Viruses (108) 8.4044 �5.2014 7.7856–8.9129 �5.4320 to �4.9236

Plants (53) 1.9979 �2.2775 1.0617–2.5609 �2.5233 to �1.8644

Shown are the coefficients of logistic regressions (median and 95% confidence intervals) of whether target host genus was known to be susceptible

(S) to a pest from a source host genus, as a function of the phylogenetic distance between source and target hosts. The regression takes the form of

logit(S) = b0 + b1*log10(PD + 1), where PD is the phylogenetic distance (time of independent evolution in My) between the source and target host

genera. All pest groups except mollusks had phylogenetic signals significantly different from zero (95%CI for b1 did not overlap 0). The probability

that a target host is susceptible to a pest from a source host is then prob(susceptible) = exp[logit(S)] / [1 + exp(logit(S))]. Number of pest species

included in the regression (those with >1 known host genus) is given in parentheses as n.

Figure 4 Known host breadth of pests affects the likelihood that plants

will share a pest. Effect of known number of host genera attacked by a

fungal pathogen on the phylogenetic signal in the probability that a

pest or pathogen from a source host also attacks a target host. Curves

are predicted from the logistic regression with coefficients given in

Table 2 for phylogenetic distance between hosts and the number of

hosts known for a particular pathogen (shown as numbers to the left of

each curve). Curves for all nine groups of pest and pathogens take a

similar form and are shown in Fig. S6.
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ranging from near monophagy to extreme generalization

(Novotny et al. 2010). Similarly, obligately biotrophic

pathogenic fungi such as rusts and smuts tend to have

much narrower host ranges than do facultative necrotroph-

ic pathogens (Oliver and Ipcho 2004). Careful additional

study is merited on how life-history strategies affect the

breadth and phylogenetic signal in host range for plant

pests and pathogens. Finer subdivisions of pests than the

nine groups used here may provide even more precision in

evaluating expected host ranges of plant pests and

pathogens.

Phylogenetic signal in host ranges of different kinds of

plant pests

All groups of pests and pathogens showed strong phyloge-

netic signals in their host ranges (Fig. 3, Table 1, Figs S3–
S5), with the exception of mollusks. The estimates of slopes

of phylogenetic signal are conservative, because the regres-

sions exclude intrageneric comparisons (i.e., any pests and

pathogens that are limited to a single host genus), because

their inclusion would force the intercept through 100%

probability of sharing. Even so, the intercepts for all the

pest groups with significant slopes (excluding mollusks)

correspond to a range of 88% to 99% (median 95%) likeli-

hood of sharing at a phylogenetic distance that approaches

zero (Fig. S5). Estimates of the intercept values should be

treated with some caution, because they represent an

extrapolation beyond the range of data used to parameter-

ize the models.

The slopes for phylogenetic signal presented here were

usually steeper than those found in empirical host range

testing of necrotrophic fungal pathogens of tropical tree

leaves (for all pest groups except oomycetes, mites, and

mollusks) (Gilbert and Webb 2007). There are several rea-

sons to expect steeper slopes from analysis of the GPDD

data than from the limited empirical data from a tropical

rainforest. First, Gilbert and Webb (2007) limited their

analysis to necrotrophic fungal pathogens that were easily

grown on laboratory media, which might be expected to

have less specific host requirements than many of the fungi

(and other pests) in the current analysis. Second, fungi and

plants used in the empirical tests all co-occurred in a small

area (0.79 ha), where fungi and local taxa should have had

abundant ecological opportunity for evolutionary acquisi-

tion of a range of hosts (even distantly related) through

frequent local encounters. The third reason, however, may

be an artifact of sampling effort. The host range testing by

Gilbert and Webb (2007) was intentionally phylogenetically

broad, testing for pathogenicity on hosts ranging across the

full spectrum of phylogenetic distances among angiosperms

in a tropical forest. This would make it likely to uncover

occasional hosts at large phylogenetic distances from the

source host. In contrast, many local host range testing

reports focus on close relatives from a local region (Wapshere

1974; Briese 2003; Barton 2004). This is a reasonable

approach when resources are limited because those are the

plants that are mostly likely to be hosts and to have an

agronomic or ecological impact, but a lack of testing of dis-

tantly related plants could mean that the GPDD data would

be somewhat more likely to have false zeros at large phylo-

genetic distances. On the other hand, this may be offset by

field reports that inform the GPDD of emerging diseases

across broad geographic areas that would likely include a

broad phylogenetic sample. Extensive, carefully struc-

tured host range testing will be necessary to determine the

Table 2. Effect of host breadth and phylogenetic distance in the likelihood the two hosts share a pest

Pest group

Coefficients 95% confidence intervals

b0 b1 b2 b0 b1 b2

Bacteria 3.7354 �3.5794 0.0664 1.7502–5.2889 �4.2790 to �2.7080 0.0634–0.0711

Fungi 6.0593 �4.5293 0.0466 5.0467–6.7900 �4.8649 to �4.0673 0.0455–0.0483

Oomycetes 3.2131 �3.5290 0.0818 0.3439–4.9863 �4.3281 to �2.2792 0.0788–0.0918

Insects 3.4837 �3.2188 0.0532 2.9285–3.9645 �3.4273 to �2.9736 0.0526–0.0539

Mites 2.6463 �2.8747 0.0447 1.1852–3.6436 �3.3190 to �2.2357 0.0438–0.0462

Mollusks �1.2019 �1.1576 0.0474 �3.7591–0.8348 �2.0378 to �0.0713 0.0467–0.0495

Nematodes 2.2984 �2.9162 0.0884 1.3244–3.1807 �3.3146 to �2.4921 0.0857–0.0932

Viruses 8.3535 �5.6544 0.0967 7.5721–9.0395 �5.9872 to �5.2985 0.0904–0.1029

Plants 2.2164 �2.7873 0.0727 1.2404–2.8660 �3.0934 to �2.3506 0.0704–0.0782

Given are the coefficients of logistic regressions (median and 95% confidence intervals) of phylogenetic signal in host sharing with two independent

variables: phylogenetic distance between source host genus and target host genus (coefficient b1) and the number of known hosts for the pest

(coefficient b2). The dependent variable was whether the target host genus was known to be susceptible (S) to a pest from the source host genus.

The regression takes the form of logit(S) = b0 + b1*log10(PD + 1) + b2*(Number of known hosts), where PD is the phylogenetic distance (time of

independent evolution in My) between the source and target host genera. Note that interaction term was not significant (S6), so the models

presented here were run with main effects only. The number of pests in each group is the same as in Table 1. Coefficient b1 was significantly

negative and b2 was significantly positive for all nine pest and pathogen groups (95% CI did not overlap zero).
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relative importance of sampling bias, life-history variation,

and evolutionary opportunity in shaping the steepness of

the phylogenetic signal in host range.

Host breadth and phylogenetic signal

The combination of phylogenetic distance between hosts

and the number of known hosts of a pathogen provided

clearer predictions of the likelihood that two hosts would

share a pest or pathogen. A pest or pathogen with a large

number of hosts reported in the GPDD is likely to truly

have a broad host range, including a large number of as yet

undescribed hosts. In nearly any local assemblage of poten-

tial plant hosts, there will be few pairs of closely related

host genera, and many more combinations of genera that

are more distantly related. This means that when a pest has

more than a small number of hosts, each additional host

would necessarily also expand the phylogenetic breadth of

the host range, even when there is a phylogenetic signal in

host range (Fig. 1).

Applications

The Pest Risk Analysis for Quarantine Pests [International

Plant Protection Convention (IPPC) ISPM No. 11] was

established in 2001 (amended in 2004) as part of the IPPC

International Standards for Phytosanitary Measures (Secre-

tariat of the International Plant Protection Convention

2004). The IPPC has 177 government signatories and pro-

vides the standards for phytosanitary policies and actions

of USDA APHIS-PPQ and its national and regional equiva-

lents around the world [e.g., the European Plant Protection

Organization (EPPO) and the meso-American Organismo

International Regional de Sanidad Agropecuaria (OIRSA)].

Along with suitable environmental conditions and agricul-

tural practices, the IPPC ISPM 11 standards focus on the

importance of the presence, abundance, and distribution of

suitable host species for an introduced plant pest to estab-

lish and spread in a new area. Compiled lists of known

hosts of plant pests and pathogens are the current standard

for assessing which hosts in the new area are most likely

threatened. The analytical tools presented here enhance the

power of such databases by allowing interpolation and

extrapolation to novel host–pest combinations.

Our results stress that for a broad diversity of plant pests

and pathogens, imposing a step-function decision process

(e.g., all hosts within a genus are at risk, and others are

not) is not ideal for risk analysis for novel pests and patho-

gens. Instead, the probability that plant species will share

pests declines as a continuous function of phylogenetic dis-

tance between the plant species. Each known host of a pest

can be used as the source host for calculating phylogenetic

distances to target hosts and then to predict which other

hosts are likely targets. The combined predictions can be

combined to estimate the probability of sharing or create

rank-order lists of at-risk plant taxa.

The number of known hosts of a pest or pathogen is a

good indicator of the expected overall breadth of hosts for

a pest or pathogen, which, when combined with the phylo-

genetic signal in host range, presents a simple predictor of

which hosts a particular pest or pathogen is likely to attack.

The logistic equations developed here for each of nine

major groups of plant pests and pathogens require knowing

(i) the major evolutionary clade to which the pest belongs

(e.g., fungi, mites), (ii) at least one genus of known hosts

for the pathogen or pest, and (iii) the genera of plants of

concern (i.e., regionally important wildland species and

agricultural crops). Predictions from each of the known

host genera could be combined to provide more complete

predictions of expected hosts. Even for novel pests with

very limited knowledge of host range, the models provide

significantly more information on which to base pest risk

analyses than the current use of host range lists.

It is important to note that this model is useful to predict

which hosts are likely to be susceptible to a particular pest or

pathogen, but does not indicate whether the impact of those

pests on a given host will be severe or benign. That is, the

models are designed to provide information on likely inci-

dence, but not about severity of damage or on the broader

economic or environmental effects of an introduced pest.

The impact on individual hosts is sometimes greater for

pests and pathogens with more specialized host ranges

(Agudelo-Romero and Elena 2008), whereas the impacts on

ecological systems may be differ depending on whether the

pests are more specialized or have broader host ranges

(Shearer et al. 2007; Dyer et al. 2010). Whether phyloge-

netic tools can be used to evaluate relative impacts on indi-

vidual hosts and ecological systems are important next steps.

The movement of live plants for horticultural use is a

particularly effective and common pathway for pest intro-

ductions (Campbell 2001). The host-to-host based phylo-

genetic approach we present here offers an integrated index

of the likelihood that unknown pests and pathogens that

hitch-hike on stock of particular horticulture species would

pose a threat to the environmentally and economically

important plant species in a proposed area of introduction.

Insights from phylogenetic ecology of host ranges thus pro-

vide a new tool for evaluating the risk of plant introduc-

tions in the absence of exhaustive knowledge of the pests of

introduced plant species.
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