COURSE TITLE: ECOL-596W PLANT EVOLUTIONARY GENETICS Fall 2013

Monday, Wednesday 2-2:50 PM BioSciences West 302* *Schedule may change to accommodate students

Instructor

Dr. Michael Barker: BSW 321E; 621-2213; msbarker@email.arizona.edu. Office hours: Wed 3-4PM

Website: http://barkerlab.net/courses.html

TENTATIVE SCHEDULE

<u>Date</u> <u>Topic</u> 8/26 Introduction

8/28 Migration

Evolution of plant populations

<u>Guest</u>

Readings Ellstrand 1992

0/20	Migration		Elistralia 1992
9/2	No class (Labor Day)		
9/4	Migration		Morjan & Rieseberg 2004
9/9	Mutation		Gaut et al. 1996
9/11	Mutation		Ossowski et al. 2010
9/16	Adaptation		Siol et al. 2010
9/18	Effective Population Size		Gossman et al. 2010
9/23	Adaptation		Strasburg et al. 2010
9/25	Epistasis & Pleiotropy		Scarcelli et al. 2007 & Lovell et al.
			2013
9/30	Dominance		Mezmouk & Ross-Ibarra preprint
10/2	Ploidy	Szovenyi	Szovenyi et al. 2013
10/7	Mating Systems	-	Charlesworth & Charlesworth 1995
10/9	Mating Systems	Wright	Slotte et al. 2013
10/14	Life History		Smith & Donohue 2008
10/16	Population Expansion		Peischl et al. preprint
10/21	Population Bottlenecks		Brandvain et al. preprint
10/23	Domestication		White & Doebley 1998 & Wang et
			al. 1999
	es and speciation in plants:		
10/28	Nature of Plant Species		Rieseberg et al. 2006
10/30	Genetic Divergence of Plant Speci	ies	Barker & Masalia, preprint
11/4	Hybridization & Introgression		Barker et al., preprint and Arrigo &
			Barker, preprint
11/6	Hybridization & Introgression		Arnold 2004 & Castric et al. 2008
11/11	No class (Veteran's day)		
11/13	Reproductive Isolation		Ramsey et al. 2003

11/18 Chromosomal Speciation

Ramsey et al. 2003 Rieseberg 2001

11/20	Hybrid Speciation	Rieseberg et al. 2003 & Buerkle &
11/25	Polypoid Speciation	Rieseberg 2007 Wood et al. 2009 & Mayrose et al.
		2011
11/27	No class (Thanksgiving)	
<u>Evolu</u>	tion of plant genomes:	
12/2	Duplication & Turnover	Barker et al. 2012
12/4	Chromosome Number Evolution	Barker et al., preprint
12/9	Repetitive Elements	Feschotte et al 2002
12/11	Organelle Genome Evolution	Adams et al. 2000 & Brandvain et al.
		2007

Goals: This class has two major goals. The first goal is to gain a better understanding of how plants evolve. This is an important topic. Plants provide the food we eat, the oxygen we breathe, the homes that shelter us, the clothes we wear, and many of the drugs that protect us from disease. Plants mitigate pollution, lessen climate change, contribute to healthy watersheds, control erosion, provide habitat for animals, and add beauty to the places we live. Thus, there is considerable incentive for understanding their origin and diversification.

The second goal is to make the transition from textbook learning of evolutionary theory to using these first principles to interpret experimental and observational data of the natural world. All readings will be from refereed journal publications. To enhance discussion and provide context for each topic, we will employ a lecture/discussion format and focus on high-profile and well-written case studies of important topics in plant evolution.

Expectations:

<u>1. Preparation.</u> This seminar will be a series of short lectures and discussions. The success of discussions depends primarily on the selection and sequencing of the materials (for which I will be responsible) and on the preparation of the participants. To ensure the latter, and especially to allow time for integration and synthesis before class, each of you should provide (by 5 pm on the day preceding each class) a list of 3 to 6 salient points from each reading including the connections to prior readings. Alternatively, you may wish to provide a more lengthy critique of (a) one or more of the ideas the author(s) is/are attempting to convey; (b) the experimental design; or (c) aspects of the analysis and interpretation.

2. Final Exam. To fully integrate topics that have been discussed over the course of the semester, students will be given a final, open-note take-home exam. Students will be expected to cogently argue their positions on contemporary questions in plant evolutionary genetics with evidence drawn from the literature and theory.

Grades: Grades will be based on preparedness as evidenced by your twice-weekly summaries (30%), on your participation in class (20%), and on the final exam (50%).Summaries and class participation will be graded as acceptable or unacceptable. However, you will have the

opportunity to revise unacceptable summaries. There will be a 10% penalty for each day an assignment is late or awaiting revision.

Readings: TBA

Some Relevant Books:

- Arnold ML. 1997. Natural Hybridization and Evolution. Oxford Univ. Press, Oxford.
- Arnold ML. 2006. Evolution through Genetic Exchange. Oxford Univ. Press, Oxford.
- Beebee T & Rowe G. 2004. An Introduction to Molecular Ecology. Oxford Univ. Press, Oxford.
- Briggs D & Walters SM. 1997. Plant Variation & Evolution, 3rd Edition. Cambridge Univ. Press, Cambridge.
- Clausen J. 1961. Stages in the Evolution of Plant Species. Harper Publishing Company, New York.
- Coyne JA & Orr HA. 2004. Speciation. Sinauer Associates, Sunderland, MA
- Dieckmann U, Doebeli M, Metz JAJ, Tautz D. 2004. Adaptive Speciation. Cambridge Univ. Press, Cambridge.
- Ellstrand NC. 2003. Dangerous Liaisons? When Cultivated Plants Mate with the Wild Relatives. John Hopkins Univ. Press, Baltimore.
- Falk DA & Holsinder KE. 1991. Genetics and Conservation of Rare Plants. Oxford Univ. Press, Oxford.
- Freeland JR. 2005. Molecular Ecology. John Wiley & Sons, Chichester, UK.
- Gavrilets S. 2004. Fitness Landscapes and the Origin of Species. Princeton.
- Grant V. 1971. Plant Speciation. Columbia Univ. Press, New York.
- Grant V. 1975. Genetics of Flowering Plants. Columbia Univ. Press, New York.
- Howard DJ & Berlocher SH, Eds. 1998. Endless Forms: Species and Speciation. Oxford Univ. Press, Oxford.
- Iwatsuki K, Raven PH & Bock WJ, Eds. 1986. Modern Aspects of Species. Univ. Tokyo.
- Judd JA et al., Eds. 2002. Plant Systematics: A Phylogenetic Approach. Sinauer Associates, Inc. Sunderland, MA.
- Lewis WH, Ed. 1980. Polyploidy: Biological Relevance. Plenum
- Levin DA. 2000. The Origin, Expansion, and Demise of Plant Species. Oxford Univ. Press, Oxford.
- Levin DA. 2002. The Role of Chromosomal Change in Plant Evolution. Oxford Univ. Press, Oxford.
- Lowe A, Harris S, Ashton P. 2004. Ecological Genetics: Design, Analysis, and Application. Blackwell Publishing, Oxford.

Lynch, M. 2007. The Origins of Genome Architecture. Sinauer Associates, Inc. Sunderland, MA.

Niklas KJ. 1997. The Evolutionary Biology of Plants. Univ. Chicago Press, Chicago.

Soltis DE et al. 2005. Phylogeny and Evolution of of Angiosperms. Sinauer Associates, Inc. Sunderland, MA.

Stebbins GL. 1950. Variation and Evolution in Plants. Columbia Univ. Press, New York.

Willis KJ & McElwain JC. 2002. The Evolution of Plants. Oxford Univ. Press, Oxford.

Young A, Boshier D, Boyle T, Eds. 2000. Forest Conservation Genetics. CSIRO Publishing, Collingwood, Australia.

Policy On Expected Classroom Behavior

Enrollment in the course signifies that a student will participate to the best of his or her abilities in each class session. Except for those provided explicitly for classroom activities, no electronic communication devices should be used during the class session. Each student is expected to attend every class session; however, all holidays or special events observed by organized religions will be honored for those students who show affiliation with that particular religion, and absences pre-approved by the UA Dean of Students (o Dean's designee) will be honored.

Policy Against Plagiarism

http://deanofstudents.arizona.edu/policiesandcodes

Policy Against Threatening Behavior

http://web.arizona.edu/~policy/threaten.shtml

Academic Integrity

Integrity is expected of every student in all academic work. The guiding principle of academic integrity is that a student's submitted work must be the student's own. This principle is furthered by the *Student Code of Conduct* and disciplinary procedures established by ABOR Policies 5-308 – 5-403, all provisions of which apply to all University of Arizona students. For further information, please see:

http://deanofstudents.arizona.edu/policiesandcodes/codeofacademicintegrity

Special Needs and Accommodations Statement

Students who need special accommodation or services should contact the SALT (Strategic Alternatives Learning Techniques), the Center for Learning Disabilities (SALT Center, Old Main, PO Box 210021, Tucson, AZ 85721-0021, (52) 621-1242, FAX (520) 621-9448, TTY (520) 626-6072), <u>http://www.salt.arizona.edu</u>, and/or the Disability Resources Center, 1540 E. 2nd Street, PO Box 210064, Tucson, AZ 85721-0064, (520) 621-3268, FAX (520) 621-9423, <u>http://drc.arizona.edu</u>. The appropriate office must document the need for accommodations.